Avaliação do Efeito de Cargas Concentradas em Vigas de Aço através de Algoritmos de Redes Neurais

Elaine Toscano Fonseca Pedro C G S Vellasco

Escopo da Apresentação Introdução Revisão Bibliográfica Redes Neurais Utilização das Redes Neurais na Previsão da carga Crítica Avaliação das Redes e Análise **Paramétrica** Considerações Finais

Motivação

- Grande parte das estruturas de aço trabalham com cargas concentradas (ex.: Pontes Rolantes).
- A busca da melhor solução requer a utilização de perfis cada vez mais esbeltos;
- O colapso da estrutura pode ocorrer por plastificação ou por problemas de instabilidade.

Motivação

- Fórmulas de previsão da carga utilizadas em normas fornecem erros superiores a 20%;
- Dados existentes na literatura insuficientes para uma análise paramétrica completa;

 A criação de novos resultados experimentais é um processo que envolve muito tempo e dinheiro;

Motivação

- Resultados via método dos elementos finitos ainda apresentam diferenças.
- As Redes Neurais, quando bem treinadas, podem fornecer novos resultados confiáveis.

Objetivos

- Avaliar o comportamento estrutural de vigas sujeitas a cargas concentradas através de uma análise paramétrica;
- Gerar novos dados que possibilitem esta análise utilizando redes neurais;

Executar uma revisão bibliográfica;

 Verificar a possibilidade da utilização de resultados gerados por elementos finitos para avaliação e/ou treinamento das redes;

Lyse & Godfrey (1935):

$$\sigma_{crit} = \frac{P}{t_w(c+2t_f)} \le \sigma_y$$

Bergfelt:

- Espessura da alma, comprimento do enrijecedor (1968);
- Nova equação (1979):

$$P_f = 0.8t_w^2 \sqrt{E\sigma_y^w \left(\frac{t_i}{t_w}\right)} f *$$

Bergfelt:

- Espessura da alma, comprimento do enrijecedor (1968);
- Colapso em 3 fases (1976);

•CARACTERIZAÇÃO DO PROCESSO DE COLAPSO:
•1- ATÉ PLASTIFICAÇÃO NA SUPERFÍCIE DA ALMA.
•2- ATÉ APARECIMENTO DE PEQUENAS DOBRAS NA ALMA.
•3- DESTE PONTO EM DIANTE ATÉ O COLAPSO.
•COLAPSO:
•1- FLAMBAGEM GLOBAL DA ALMA.
•2- FLAMBAGEM LOCALIZADA NA REGIÃO
•PRÓXIMA A CARGA CONCENTRADA.

Bergfelt:

Roberts:

- Mecanismo de rótulas plásticas (1978);
- Testes confirmam proporcional $t_w^2 e t_f$ (1981);
- 2 equações (1981):
 - Flambagem da alma (+ significativa 1983);

$$P_{f} = 0.5t_{w}^{2}\sqrt{E\sigma_{y}^{w}\frac{t_{f}}{t_{w}}}\left[1 + \left(\frac{3c}{h}\right)\left(\frac{t_{f}}{t_{w}}\right)^{3/2}\right]$$

Plastificação da alma (almas espessas);

$$P_f = \left(\frac{4M_f}{\beta}\right) + \sigma_y^w t_w (\beta + c)$$

$$\beta^2 = 4(\mathbf{M}_f \,/\, \boldsymbol{\sigma}_y^w) t_w$$

Roberts:

Figure 2.5 - Collapse Mechanism. (after [ROBE78])

Revisão Bibliográfica BERGFELT x ROBERTS: MODO DE COLAPSO: RÓTULAS NAS MESAS → MOMENTO (-) SEGUIDO DE: PLASTIFICAÇÃO OU FLAMBAGEM DA ALMA X DETERMINAÇÃO DA DISTÂNCIA ENTRE RÓTULAS PLÁSTICAS NAS MESAS \rightarrow MÉTODO DOS TRABALHOS VIRTUAIS

Eurocode:

FLAMBAGEM:

$$P_{f} = 0.5 t_{w}^{2} \sqrt{E \sigma_{y}^{w}} \left(\sqrt{\frac{t_{f}}{t_{w}}} + \frac{3 S_{s} t_{w}}{h t_{f} \gamma_{m}} \right)$$

MÉDIA = 1.558, DESVIO PADRÃO = 28%

 Solução Simplificada e comparação com resultados experimentais (1997):

$$P_f = \left[1.1t_w^2 \left(E\sigma_y^w\right)^{0.5} \left(\frac{t_f}{t_w}\right)^{0.25} \left(1 + \frac{c_e t_w}{h t_f}\right)\right] \frac{1}{F}$$

Kennedy (1997):

- Gerou mais 31 dados experimentais;
- Nova formulação para previsão da carga crítica.

Souza (1995):

- Simulação não-linear do problema de cargas concentradas utilizando o Programa Saloof desenvolvido por Andrade (1983);
- Constatou que os erros entre as fórmulas e os resultados de elementos finitos eram da ordem de 20%.

Figure 1 - Finite element mesh adopted.

Figura 2 - The semiloof shell element.

Gird er	b(m m)	d(m m)	t _w (mm)	b _f (mm)	t _r (m m)	c(m m)	σ _w (MPa)	σ _f (MPa)
b14	2400	400	2	100	8	180	294	294
R01	800	800	2	300	15	40	266	295
R03	800	800	2	120	5	40	266	285
b08	800	800	2	120	5	40	285	290
b83	800	800	3	250	12	40	328	298

Table 1 - Beam's geometric and material characteristics.

Inteligência Computacional Conjunto de técnicas inspiradas na Natureza para o desenvolvimento de sistemas inteligentes, que imitam características do comportamento humano. Ex.: Aprendizado; Raciocínio; Evolução; Adaptação.

Redes Neurais

Inspiradas na estrutura do cérebro para apresentar características humanas, tais como:

Aprendizado por experiência;

- Generalização de novos exemplos;
- Abstração;
- Associação entre padrões diferentes.

Neurônio Artificial

Recebe, processa e transmite as informações.

As redes neurais tem uma estrutura organizada em camadas de elementos processadores conectadas entre si. A organização depende do algoritmo.

Algoritmos de Redes Neurais O aprendizado das redes pode ocorrer através de um treinamento supervisionado ou não-supervisionado.

Backpropagation:

- Treinamento supervisionado;
- Aproximador universal.

Rede Backpropagation

Camadas Escondidas

Feed-Forward Feed-Backward

Aplicações das Redes Neurais

- Previsão de séries temporais;
- Detecção e diagnóstico de falhas;
- Reconhecimento de imagens;
- Reconhecimento de voz;
- Reconhecimento de caracteres impressos (OCR);
- Detecção de fraude em cartões de crédito;
- Avaliação de risco;
- Determinação do perfil de consumidores;

Aplicações em Estruturas

Resistência de estruturas a terremotos;

 Classificação e previsão de problemas na análise sísmica;

Avaliação do comportamento de ligações semi-rígidas no eixo de menor inércia.

Quantidade de Dados por Faixa de Carga

Propriedades Geométricas e do Material

Espessura da alma ao quadrado.

Resultados Preliminares

- Opções do Software NeuralWorks Predict:
 - Nivel de ruído dos dados;
 - Transformação dos dados. Ex.: x², 1/x;
 - Seleção de variáveis;
 - Busca da rede;
 - Tolerância;
 - Função de Ativação.
- Erros da ordem de 30%.

Novo Treinamento

Inserção de parâmetros combinados:

Retirada dos dados de espessura de alma inferior a 1 mm:

- Não se ajustaram bem a nenhuma das configurações de rede treinadas;
- Dificuldade de ensaio de vigas com esta característica.

Redução do erro máximo de 30 para 17%.

Resultados da Primeira Modelagem

Método	Roberts (2.9)	Bergfelt (2.7)) Rede Neural	
Erro Médio do Treinamento	18.03	26.66	5.97	
Erro médio dos Testes	13.05	14.26	3.55	

Resultados da Primeira Modelagem

Modelagem Final

Quantidade de Dados por Faixa

Faixas de	Dados para	Faixas de	Dados para	
Carga	Treinamento e	Carga com	Treinamento e	
	Teste	Superposição	Teste	
0 a 100	82	0 a 121.64	89	
100 a 200	45	79.68 a 252.75	65	
Maior que 200	28	Maior que 150	46	

Saídas da Rede de Classificação

Faixa 1:0 a 100	Faixa 2: 100 a 200	Faixa 3: Maior que 200
1-0-0	0-1-0	0-0-1

Faixa 2 - 100 a 200kN

Erro percentual máximo = 12.96%.

Faixa 3 - 200 a 4010kN

- Erros percentuais de até 20%;
- 14 entradas 46 dados de treinamento e teste;
- Redução para 11 entradas: c. t_w, a e h foram retirados.
- Fórmula de Lyse & Godfrey Plastificação;

Novo treinamento - Erro Máximo de 11,16% - Ajuste mais fino da fórmula.

Faixa 3 - 200 a 4010kN

Faixa 1 - 30 a 100kN

Características das Redes

Rede Neural	Classificação	Faixa 1	Faixa 2	Faixa 3
Entradas	14	15	14	11
Processadores na Camada escondida	0	16	16	8
Saídas	3	1	1	1
Tolerância (%)	5	20	20	17
Função de Ativação	Sigmóide	Sigmóide	Sigmóide	Sigmóide
Nível de Ruído	Dados limpos	Dados limpos	Dados limpos	Dados limpos
Transformação de Dados	Superficial	Superficial	Superficial	Superficial
Seleção de Variáveis	Nenhuma	Nenhuma	Nenhuma	Nenhuma
Busca da Rede	Exaustiva	Exaustiva	Exaustiva	Exaustiva
Erro percentual máximo	-	14.28	12.96	11.16
Desvio padrão		5.20	3.48	4.47
Erro Percentual médio absoluto	-	4.08	2.75	4.68
Dados com erro inferior a 5%	100%	69.6%	86.7%	60.7%
Dados com erro entre 5% e 10%	-	24.1%	8.9%	32.1%
Dados com erro entre 10% e 15%	-	6.3%	4.4%	7.2%
Percentual de Treinamento-Testes	70-30	70-30	70-30	70-30

Pequeno número de dados para uma avaliação completa dos resultados.

Resultados: Rede x Roberts

Resultados: Rede x Roberts

← bf = 50 --- bf = 100 --- bf = 150 --- bf = 200 --- bf = 250 --- Roberts

A fórmula de Roberts não considera a variação da largura da mesa.

Resultados: Rede x Roberts

- Bergfelt A altura da viga tem influência secundária na carga última;
- A variação de h implica na variação da esbeltez da alma e na variação do fator de forma a/h;
- A carga é mais afetada para a/h inferior a 2,5;
- A carga diminui com o aumento da esbeltez e cresce quando o fator de forma diminui.

Principais Conclusões

 A inserção de parâmetros combinados melhorou o desempenho de todas as redes treinadas;

A utilização de fórmulas como entradas no treinamento produziu um ajuste mais fino da função e reduziu o erro máximo;

Na faixa 3 a redução do número de entradas fez com que a rede tivesse um número de conexões mais compatível com o número de dados disponíveis;

Principais Conclusões Os erros das redes se mostraram inferiores aos fornecidos pelas fórmulas existentes;

Conclusões da Análise Paramétrica - Faixas 1 e 2

Os resultados da rede confirmaram as conclusões de Bergfelt, de que a altura da alma tem uma influência secundária na carga última, e que este parâmetro não deve ser avaliado isoladamente;

O comprimento uniformemente carregado c influencia mais na carga última quando em vigas de mesas mais finas, ou seja, inferiores a 10 mm. Mas não se deve desvincular a espessura da mesa carregada da espessura da alma;

Conclusões da Análise Paramétrica - Faixa 3

A equação proposta por Lyse & Godfrey é muito conservadora na previsão da carga crítica de vigas sujeitas a cargas concentradas, embora o erro seja menor para fatores de forma iguais a 3;

Para perfis de alma mais compacta, com esbeltez h/t_w inferior a 40, a influência da variação da razão c/h é mais significativa.

Principais Conclusões

A diferença de comportamento entre perfis de alma mais esbelta e perfis de alma compacta leva a conclusão de que o modelo de redes neurais com três faixas de previsão de carga se mostra adequado para este tipo de problema.