
FRAME IDEALISATION & ANALYSIS 

SUMMARY: 
 Introduce the various global frame modelling analysis 

approaches & basic concepts. 
 Introduce the classification of frames as 

braced/unbraced, sway/non-sway. 
 Introduce frame & member imperfections and when to 

account for them in the global analysis. 
 The idea that the choice of the analytical tool is guided 

partly by the method of design to be used and partly by 
the user as a function of software availability is 
introduced. 

 The different methods, “direct” and “indirect”, for 
second-order analysis is outlined and the consequence 
that each has for the design of the frame and its 
components is explained. 

 Use of elastic (linear & non-linear) methods of 
analysis and design are discussed. 

 Investigated the influence of horizontal forces & 
imperfections on the frame modelling. 

 The different sources of non-linear structural 
behaviour are identified. 

 Second order effects are explained as well as the 
methods and limitations for a second order analysis. 

 The assumptions and limitations of the various elastic 
methods of analysis are given. 



 

OBJECTIVES: 
 Understand that the available tools for the practical 

analysis of structures have limitations due to the 
adopted assumptions and simplifications about 
material and member behaviour. 

 Understand the notions of classification: 
braced/unbraced and sway/non-sway. 

 Understand what and when imperfections have to be 
included in the global analysis. 

 Understand how to obtain the elastic critical load for a 
frame. 

 Understand the differences between the various 
methods of structural analysis. 

 Understand the origin of second order effects and 
when they are important to consider. 

 Understand the basis of and limitations of approximate 
approaches to second order analysis. 

 Recognise there are cases where a given type or types 
of analyses are excluded, but that often there are a 
number of various methods which may be employed to 
predict the structural response. 

 Appreciate the links between various analytical and 
design approaches. 
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1. INTRODUCTION TO FRAME BEHAVIOUR. 
1.1 Scope. 

Global frame analysis → distribution of the internal 
forces/corresponding deformations to a specified loading. 
 
Adoption of adequate models → assumptions about the 
behaviour of the structure. component members and joints. 

1.2 Load displacement relationship of frames 

Response of a structure to loading → relationship between a 
load parameter and a significant displacement parameter. 
 
An example of the behaviour of a typical sway frame under 
increasing load is shown in Figure 1. 
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Figure 1 - Load displacement response of a framed structure. 

The load parameter  is a multiplier (or load factor) applied to 
all the load components to produce monotonic increase in the 
loading on the structure 
 
Displacement parameter → top floor lateral displacement 
 
Curve Slope → measure of the frame structure lateral stiffness 
 



 

Once the linear limit is reached → slope gradually reduces → 
three kinds of non-linearity:  

-geometrical non-linearity 
-joint non-linearity 
-material non-linearity 

 
Joint non-linearity usually manifests → low levels of load. 
 
Geometrical non-linearity → influence of the structure actual 
deformed shape on the internal force distribution → evident 
well before the onset of material yielding 
 
Maximum load → equilibrium  → load ↓ as deformations ↑ 
 
Slope (stiffness) is zero → peak load and then → negative → 
structure is unstable 
 
Peak load, ultimate load, → point of imminent structural 
collapse (in the absence of load shedding) 
 

2. FRAME IDEALISATION & STRUCTURAL 
ANALYSIS BASIC CONCEPTS. 
 

2.1 Modelling of building structures for analysis 

 
Global analysis of frames → structural model, structure 
geometric behaviour and the section/joint behaviour 
 
Later design checks of the frame (members & joints) 
 



 

Checks → type of analysis performed and cross-section 
verification (ultimate limit state criteria) 
 

2.1.1 Structural concept. 

Layout of the structure → requirements for the intended use 
of the building, + resistance to the actions that are likely to 
occur. 
 
Identify the structural elements categories: 

1.main structural elements: main frames, joints & 
foundations 

2.secondary structural elements: secondary beams or 
purlins; 

3.other elements: i.e. sheeting, roofing and partitions. 
4. 

2.1.2 Spatial behaviour. 
 
Alternative → 3D framework analysis → two series of 
independent plane frames in horizontal directions at right 
angles → each plane frame has sufficient out-of-plane 
restraint to ensure its lateral stability 
 

 
Fig. 2 - Reduction of a 3D framework to plane frames 

 
 
 
 
 



 

 
 

2.1.3 Resistance to horizontal forces 
 

I)FRAME CLASSIFICATION. 
 
a) Braced and unbraced. 

Bracing → used to prevent/restrict, sway in multi-storey 
frames. Common bracing systems → trusses or shear walls 
 

Shear wallTrusses

 
Figure 3 - Common bracing systems. 

 

Frame to be classified as a braced frame, → adequately stiff 
bracing system 
 
Frame → braced → analyse, separately, frame & bracing 

 The frame without the bracing system → fully 
supported laterally resisting only to vertical loads. 

 The bracing system → all the horizontal loads, any 
vertical loads applied to the bracing system and the 
effects of the initial sway imperfections. 

 
Frames without a bracing system and frames with a bracing 
system not sufficiently stiff → unbraced. 
 
Unbraced frames, a single structural system, consisting of the 
frame/bracing when present → both vertical/horizontal loads 
acting together as well as for imperfections effects. 



 

b) Braced and unbraced classification criteria. 
 
The existence of a bracing system does not guarantee that the 
frame structure → classified as braced but only when it 
reduces the horizontal displacements by at least 80%. 
 
 no bracing system is provided → unbraced. 
 bracing system is provided: 

 when br > 0,2 unbr: → unbraced, 
 when  br  0,2 unbr: → braced,  

br  structure lateral flexibility with bracing system 
unbr structure lateral flexibility without bracing system 
 

c) Sway and non-sway frames. 
Non-sway frame → frame response to in-plane horizontal 
forces is sufficiently stiff to neglect any additional forces or 
moments arising from horizontal node displacements. 
 
Global second-order effects (P-  sway effects) may be 
neglected for a non-sway frame.  
 
If global 2nd-order effects are not negligible → sway frame 
 
Normally a frame with bracing is classified as non-sway, 
while an unbraced frame is classified as sway. 
 
It is possible for an unbraced frame → non-sway (often the 
case of one storey portal frame buildings) while a frame with 
bracing → sway (possible for multi-storey buildings) 



 

Braced frame

(may be sway if bracing is very flexible)

Unbraced frame

(may be non-sway if not sensitive to horizontal loads)  
Figure 4 - Braced and unbraced frame. 

Non-sway frame → first-order analysis may always be used.  
 
Sway frame  → second-order analysis shall be used → 
iterations on a 1st-order elastic analysis is usually adequate 
 
Sructure that meets certain conditions, enables a 1st-order 
analysis (without any iteration process) to be used either by: 

-nominal correction to member end forces considering 
global 2nd-order effects 

-analysing for vertical loads & sway load effects 
(magnified) separately 

 

d) Sway and non-sway classification criteria. 
 
Classification → sway or non-sway → ratio of the design 
value of the total vertical load VSd applied to the structure to 
its elastic critical value Vcr producing sway instability (sway 
mode failure) 
 
The closer the applied load is to the critical load, the greater is 
the risk of instability and the greater are the global second-
order effects (P-  effects) 
 
 



 

 
The classification rule is: 

 VSd / Vcr   0,1   → non-sway.  
 VSd / Vcr  > 0,1   → sway 
 

This rule can also be expressed: 
 10

Sd

cr
cr V

V
  → non-sway 

 10
Sd

cr
cr V

V
   → sway 

 

3. GENERAL CONSIDERATIONS ABOUT THE 
MODELLING OF FRAMES. 
 
Guidelines from Eurocode 3: 

1.Members and joints should be modelled for global 
analysis → reflects expected behaviour for the relevant 
loading 

2.The basic geometry of a frame should be represented by 
the centrelines of the members. 

3.Sufficient to represent the members by linear structural 
elements located at their centrelines, disregarding the 
overlapping of the actual widths of the members. 

4.Account may be taken of the actual width of all or some of 
the members at the joints 

 

3.1 Choice between a first-order or a 2nd-order analysis. 

 
Preliminary design stage → structure → braced or unbraced 
 
This determines how the vertical and horizontal load effects 
are to be considered in the analysis. 



 

 
Once established → preliminary design for the 
members/joints 
 
Preliminary analysis → classify sway/non-sway 
 
For most typical frames → first-order analysis 
 
Whereas a second-order, elastic or plastic analysis can always 
be used, there are cases where: 
 a first-order analysis suffices, without any need to account 

for second-order effects, 
 when VSd/Vcr  0,25, a first-order elastic analysis → sway 

frames → corrections to account for second-order effects 
 Rigid-plastic first-order analysis → VSd/Vcr  0,20 and all 

the internal forces & moments are amplified by 1/(1- 
VSd/Vcr.) i.e. an Merchant-Rankine Approach 

 
Necessary to evaluate the degree to which the second-order 
effects may modify the distribution of internal forces (if sway 
displacements (P-) and/or member imperfections/member 
deformations (P-) are significant) 
 
Member imperfection/deformation effects → significant for 
certain types of relatively slender members in a sway frame, 
→ unlikely to be so in a non-sway frame 
 
Effect of sway → critical load parameter cr, i.e. the ratio 
between the total vertical load which would produce in-plane 
sway instability of the frame and the actual design vertical 
loads (Eurocode 3 uses the inverse i.e., 1/cr  = VSd / Vcr,) 
 



 

With columns preliminary sizes → based on VSd/Vcr for 
critically loaded columns of the frame 
 
Approximate approach → this parameter for multi-storey 
buildings 
 
This approach is not suited for typical one-storey pitched-
portal industrial frame buildings.  
 
When cr  10 (or VSd /Vcr  0,1) the frame is classified as 
non-sway and a first-order analysis is adequate.  
 
Sway frames → second-order analysis is required. 
 
For many structures → first-order analysis → internal forces 
and moments → amplified to account for second-order effects  
 
Member deformation effect → relatively slender beam-
column members of both sway and non-sway frames 
 
EC3 → examine the importance of local member 
imperfections for certain types of beam-column in sway 
frames only 
 
In the absence of a specific requirement about the effect of 
member deformations due to load, the check for member 
imperfection significance may also be considered as an 
evaluation of the significance of the local second-order effects 
(P- ) on a given member, whatever the source. 
 
Procedure to identify the slender members concerned is 
similar to frame sway classification.  



 

 
The difference → 1/cr  = NSd / Ncr for the beam-column 
member alone 
 
When NSd / Ncr   0,25 for any such member → introduce 
member imperfections (at least for the members concerned) in 
the global analysis and to use a 2nd-order analysis. 
 
In the calculation of Ncr (Euler load) one uses a buckling 
length for the member = to the system length. 

The imperfection to be used is specific to the used 
member type and the relevant buckling curve. 

 
3.2 Choice between elastic and plastic methods of analysis. 

 
A plastic method → only appropriate under certain 
conditions: steel properties, member cross-section 
classification & joint ductility 
 
The design checks → sophistication of the analysis tool used 

In a 2nd-order analysis no need to check in-plane stability 
of frame/members 
 
The choice of global analysis will thus depend not only on 
EC3, but also on personal choices, available software, etc 
 
Balance between effort devoted to global analysis/remaining 
ULS checks, Figure 5.  



 

Global analysis

ULS checks

simplification of global analysis

Share of
 effort

sophistication of global analysis

 
Fig. 5 - Balance of effort between global analysis/ULS checks 
 
Whatever the design method → identify when 2nd-order 
effects need to be accounted 
Typical plane frames → any of the methods of analysis may 
be used 
 

3.3 Elastic global analysis and design: guidelines. 

In an elastic analysis the frame components choice (sections 
& joints) is not limited by any ductile behaviour requirements 
i.e. the method can be used in all cases.  



 

Figure 6 depicts the different possibilities for elastic global 
analysis and the relevant checks, Eurocode 3. 

Elastic

global analysis

Check of components

and frame

Account for 2nd order effects

1st order analysis

Sway frameNon-Sway frame

Sway Mode Buckling Length

Method

Amplfied Sway Moment

Method

(in specific cases)

2nd order analysis

Amplified sway

moments

Beam end and joint moments

amplified by 1,2

(general)

Cross-section resistances and local stability

Joint resistances
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Figure 6 - Elastic global analysis and relevant design checks 

with reference to Eurocode 3 
 

3.3.1 Scope of 1st-order elastic analysis. 
 
First-order elastic analysis, with appropriate account of global 
frame imperfections → non-sway frames → 2nd-order effects 
are insignificant 
 
For sway frames under certain conditions. 

-Prior to adopting a first-order analysis → evaluate 
whether this kind of analysis is appropriate for the frame  
-Once the analysis is carried out and before proceeding 
with the design checks → examined second-order effects 

 
The frame is analysed for various combination cases. 



 

 
For a frame subject to sway, but classified as non-sway (when 
VSd/Vcr  0,1), an error of up to 10% is expected for sway 
displacements & bending moments when compared to 2nd-
order analysis results. 
 

3.3.2 Frame design following first-order analysis. 

-Second-order effects. 

 
First-order elastic analysis provides a design safe basis as long 
as the structure response only slightly deviates from the actual 
response over a considerable range of loads (i.e. structures 
with low axial loads). 
 
Structures with high axial loads, L1, does not provide a lower 
bound of the maximum load → it neglects 2nd-order effects 
 
First-order elastic analysis → sway frames → appropriate 
corrections → second-order effects 

Load parameter 

Displacement parameter

1st order elastic analysis

 L1 Elastic limit beyond which the adopted

linear member and joint behaviour

assumptions are no longer strictly valid

 
Fig. 7 - Load displacement response: Range of validity of first 

order elastic analysis. 



 

- Cross-sections. 

 
Resistance (ultimate limit state) check of the cross section 
members → does not exceed the design resistance (stress).  
 
Elastic analysis → yield stress in the extreme fibres as the 
member design condition → any class of member cross-
section or joint can be adopted. 
 
When class 3 and class 4 sections are used → attainment of 
the yield stress in the extreme fibres → effective cross section 
for class 4 sections 
 
1st-order or 2nd-order elastic analyses → determine the load 
when the first plastic event takes place 
 
Sections → requirements for ductile behaviour (member 
section Classes 1 or 2), the section resistance → plastic 
interaction formula 
 
Furthermore, Eurocode 3 → redistribution of the calculated 
bending moments following a first-order analysis of up to 
15% of the peak calculated moment in any member on 
condition that equilibrium is maintained and that the members 
concerned are of Class 1 or of Class 2. 
 

-Stability. 
 

The design resistance of the most critical section allows one to 
determine the upper limit, represented by L1   → frame cross-
sections → linear elastic 
This assumes that the structure/members remain stable. 



 

 
Investigate instability → in-plane and out-of-plane stability 
(buckling, lateral-torsional buckling) 
 
Instability reduces the value of L1. 
 
For the design to be adequate, L1 must be at least unity 
 
For Sway Buckling Length Method → 2nd-order sway effects 
→ in-plane stability of the column members → sway mode 
buckling length 
 
For all the other methods, the in-plane stability of the column 
members → non-sway buckling length.  
 
No other check of in-plane frame stability in the sway mode is 
required 
 

-Serviceability. 
 

For most frames, a first-order elastic analysis → good tool for 
predicting the response of the structure/elements at the 
serviceability limit state (permissible deflections) 
 
At this level of loading, the non-linear effects (2nd-order 
effects) will be small 
 
May also be necessary to check the structure vibrations (office 
& residential buildings comfort levels) 

3.3.3 Scope of second-order elastic analysis. 

 



 

Second-order elastic analysis, with due allowance being made 
for global frame imperfections, may be used in all cases. 
 
It is always required for sway frames and when member 
imperfections must be included 
 
Ec3 → number of procedures to provide such an analysis 
 
Some of these methods (the indirect methods) are not strict 
second- order analysis methods → simple but acceptable 
means of obtaining safe results under certain conditions 
 
For instance, neither the “equivalent lateral load method” nor 
any of the indirect methods are suitable for accounting local 
2nd-order effects (P- ) due to either member imperfections or 
deformations. 
 

-General method. 

 
General method  → direct method for second-order analysis 
 
2nd-order effects due to global frame imperfections, sway 
displacements and (usually) in-plane local member 
deformations are taken into account directly when using the 
general method of second order analysis 
 
2nd-order effects due to local member imperfections can also 
be accounted for when using this analysis. 

-Equivalent lateral load method. 

 



 

Iterative procedure, using the results of a first-order analysis 
at each iterative step 
 
Can be considered to be a direct method for second-order 
analysis → only suitable for accounting sway effects (P-) 
 
Except → some relatively slender members, which is rare in 
typical sway frames → gives quite satisfactory results 
 

-Amplified Sway Moment Method. 
 

Can be adopted if the 2nd order bending moment distribution 
→ approximately affinity to the 1st order bending moment 
(low to moderate sway structures). 
 
This guaranteed by limiting to cases: cr > 4 (Vsd /Vcr<0,25) 
 
The sway moments arise → applied horizontal loads and also 
through the effects of frame or the vertical loading 
asymmetry. 
 
Non-sway internal forces and moments due to vertical loads 
only → first order analysis with sway prevented 
 
Internal sway forces and moments → amplifying those given 
by a separate analysis for the horizontal forces including those 
liberated at the floor levels 
 
 
 
 
Design moments/forces caused by sway are obtained in steps: 



 

 
1.Analyse the frame for vertical loading only, with floor 

levels laterally restrained (sway prevented) 
2.Determine the horizontal reactions at floor level restraints 
3.Analyse the frame with the floor level horizontal restraints 

removed, under the horizontal forces including a system of 
lateral forces equal but opposite to the horizontal reactions 
found in Step 2 

4.Moments for joint, member cross-section and out-of-plane 
beam stability design are the moments Step 1 + moments 
Step 3 which have been amplified by an appropriate 
factor. (Shear forces and axial loads are also amplified) 

5. Magnifying factor is: 
 1

1









V

V
Sd

cr

 (the method is valid for V
V

Sd

cr
 0 25, ) 

 
Amplified sway moments & forces are added to the non-sway 
values → design values 
 
Moments which arise due to sway only are amplified by the 
given amplification factor while retaining the non-sway 
moments at their original values 
 
For the in-plane buckling check → non-sway buckling length 
+ amplified moments and forces 
 
Out-of-plane stability must also be checked. 
 

-Sway-Mode Buckling Length Method. 

 
2nd-order sway effects → using a first-order elastic analysis → 
unknown sensitivity structures 



 

 
Internal forces → first-order analysis 
 
Sway moments in beams/joints → amplified by a nominal 
factor of 1.2 and added to the remainder of the moments 
(those not due to sway) 
 
Amplified forces → design checks of joints and member 
cross-sections and member in-plane and out-of-plane stability 
 
For in-plane buckling → in-plane the sway-mode buckling 
length must be used 
 

3.3.4 Design following a second-order elastic analysis. 

-Cross-section. 

Same design checks for the first-order analysis 
 
Critically loaded section/joint → upper limit → load 
multiplier L2 →, elastic analysis is valid 
 
Design is adequate → L2  ≥ 1 



 

Load parameter

Displacement parameter

1st order elastic analysis

 cr

 L2
assumptions are no longer strictly valid

Limit load beyond which the elastic

2nd order elastic analysis

 
Figure 8 - Load displacement response: Range of validity 

second order elastic analysis. 

 

- Stability. 

a) General second-order analysis 
 
General second-order elastic analysis → overall in-plane 
sway-mode frame stability is covered 
 
When a general method is used it includes both frame and 
member imperfections → critical load is obtained, neither in-
plane frame nor member stability need to be checked. 
 
General method of second-order analysis is rarely brought to 
the point where the elastic critical load is obtained. 
 
Furthermore, neither member imperfections nor out-of-plane 
behaviour are usually considered 
 



 

Checks against out-of-plane instability of the members/frame 
are required but in-plane frame stability check is not required. 
 
It is advised to carry out in-plane stability checks → relatively 
slender members → member imperfections were not 
considered 
 
Non-sway in-plane buckling lengths → for sway or  non-sway 
 

b) Alternative indirect methods 
 
Amplified Sway Moment or Sway Mode Buckling Length 
Methods → out-of plane and in-plane frame and member 
stability must be checked 
 
Amplified Sway Moment Method → in-plane non-sway mode 
buckling length is used + amplified moments 
 
Sway-Mode Buckling Length Method → in-plane sway-mode 
buckling length 
 
Suggested moment including the non- amplified sway 
moments → for this buckling check although not stated in Ec3 
 
Amplified moments → sections design checks + lateral-
torsional buckling 
 
Ec3 → these checks guarantee the overall sway stability of the 
frame when any of the direct or indirect methods are used 



 

3.3.5 Assessment of the elastic critical load for a frame in 
the sway mode. 

-Approximate procedure. 

 
Frames in building structures, i.e. beams connecting each 
column at each storey level, the sway mode elastic critical 
buckling load can be calculated by: 
 1st-order elastic analysis for the specific load combination. 

The horizontal displacement of each storey due to the 
loads (both horizontal & vertical) is determined.  

 Elastic critical load of the frame (sway mode) under the 
specific load combination case may be estimated from: 

 
V

V h

V

H
Sd

cr i

 





max
  

 
where  i designates the ith storey 

VSd  design value of the total vertical foundation reaction 
Vcr  is the elastic critical load of the sway mode frame, 
  horizontal displacement at the top of the ith storey 

  relative to the bottom of the ith storey, 
h  is the ith storey height, 
H total horizontal reaction at the bottom of ith storey, 
V  is the total vertical reaction at the bottom of ith 

storey. 
 



 

-Grinter Frame Procedure. 
 
Replace the actual frame by the equivalent Grinter frame 
 
For multi-bay frames → first find an intermediate single-bay 
substitute frame with rigid joints before determining the 
Grinter frame equivalent 
 
A multi-story multi-bay frame with rigid or semi-rigid joints 
is first replaced by an equivalent substitute single bay frame 
having rigid joints and of columns and beams with equivalent 
stiffnesses 
 
This equivalent  → lateral displacements of each storey are 
the same as for the original frame → elastic critical load for 
both structures should be similar 
 

K b,1 K b,2

K c,1 K c,2 K c,3

K b = K b,equi, i

K c = K c,j1
2

= K b,equi, iK b
* 3

= K c,jK c
*

Foundation beam

(a) (b) (c)  
Figure 9 - (a) actual frame (semi-rigid joints), (b) substitute 

frame (rigid joints), (c) Grinter frame. 

 
 



 

Assumed columns → elastically and are continuous → 
stiffness of the column at each storey is: 
 


j

jc,c K
2

1
K  

where jc,K  is the column j stiffness coefficient, 
jc,

jc,

L

I . 

Equivalent stiffness coefficient of the beam with linear 
restraints at each storey is: 
 


i

i equi,b,b KK  

i b,

i equi,b,
i equi, b, L

I
K   in which i b,

i
i equi,b, I

3α1

1
I 










  & 
i b,i ini, j,

i b,
i LS

2EI
α   ( 0α i   for a 

rigid joint) 

ib,

ib,

L

EI  is the flexural stiffness of the considered beam i, 

iini,j,S  is the initial joint stiffness at the end of the 
considered beam in the actual structure.  

 
For a beam in which the joint stiffnesses are not the same at 
each end → uses lowest joint stiffness (conservative) or → 
appropriate single value for individual equivalent beam 
stiffness 
 
Since the lateral displacements at each storey of the real, the 
substitute and the equivalent Grinter frames are similar, the 
values of the elastic critical loads for all three frames can be 
expected to be similar 
 
Stiffness of the members in the Grinter frame are : 
 

 
j

jc,
*
c

i
i equi,b,

*
b KKandK3K  



 

Elastic critical load of the actual frame with semi rigid joints 
can be computed by referring to the associated Grinter frame 
 

1- The critical load of each column Vcr
*  → buckling 

length in the sway mode considering the end restraints 
2- Each column of the Grinter frame → Vcr

*. The lowest of 
all the, Vcr,min

*  , is selected as being a safe lower bound for 
the elastic critical load of the Grinter/actual frame 

 

5.IMPERFECTIONS. 
 
 

Appropriate account for the effects of practical imperfections 
in the global analysis, in the analysis of bracing systems and 
in member design. 
 
Practical imperfections, which include residual stresses, are 
geometrical imperfections such as lack of verticality, lack of 
straightness, lack of fit and the unavoidable eccentricities 
present in practical joints.  
 
Eurocode 3 requires that two kinds of imperfection be 
included in the global analysis of all frames: 
 initial sway imperfections (frame imperfections), 
 member imperfections, where necessary. 

 
Member imperfections may neglected → non-sway frames 
 
For sway frames with slender columns the analysis may have 
to incorporate member imperfections 



 

4.1 Frame imperfections. 

 
Global frame imperfections → global analysis → equivalent 
geometric imperfection, i.e. an initial sway (see figure 10(a)).  
 
Resulting forces and moments → member design 
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Figure 10 - (a) Global frame imperfections (b) Local member 

imperfections. 

Frame imperfections → load case to be used in conjunction 
with all the critical load combinations acting on the frame 
 
Initial sway imperfections → all horizontal directions, but one 
direction at a time 
 
Particular attention → anti-symmetric sways on two opposite 
faces → introduce torsional effects. 
 
Global imperfections can also be accounted → introducing 
equivalent lateral loads at the floor levels → two possible 
ways for introducing frame imperfections → 4.2 & 4.3 



 

4.2 Global geometric imperfection for frames. 

Frame imperfections are quantified → initial sway rotation of 
the frame relative to the foundation of the columns (figure 
11). 
 

 

Sway imperfection 

F2

F1
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Equivalent forces  
Figure 11 - Global frame imperfections. 

The initial sway imperfections are determined directly from: 
 

 = sckk   0  
 

where :  0=1/200 0,5

c
c )

n

1
(0,5k   but  1k c  ; 0,5

s
s )

n

1
(0,2k     but 1k s   

nc is the number of full height columns per plane 
ns is the number of storeys 
 

4.3 Closed system of equivalent horizontal forces. 
 

Alternative method → use a closed system of equivalent 
horizontal forces 
 
Procedure → same as that for obtaining the equivalent lateral 
load to account for the P- sway effect due to the loading 
 



 

Equivalent horizontal forces at each roof and floor leve → 
multiplying the proportion of the vertical load applied at the 
level by the initial sway imperfection 
 
May be applied in any horizontal direction, but only in one 
sway direction at time 
 
The equivalent horizontal forces → vertical reactions x initial 
sway imperfections are applied at the supports (in the opposite 
direction to those applied at the other levels) 
 
Equivalent horizontal forces on the entire frame form a closed 
system → net equivalent horizontal force → entire 
structure=0 
 

4.4 Imperfections for analysis of bracing systems. 
 

Bracing systems → required to provide lateral stability within 
the length of beams or compression members must also be 
analysed with allowance being made for an equivalent 
geometric imperfection of the members to be restrained 
 
Initial bow imperfections or an equivalent stabilising force 
 
When the restrained members are spliced → bracing system 
shall be capable of resisting a local force applied to it at that 
point by each beam or compression member which is spliced 
 

4.5 Local member imperfections and member deflections. 

Local member imperfection to be used (bowing) → Fig. 10(b) 
 



 

Effect → same as that due to the actual deflection of the 
member itself due to bending and axial load, i.e. a P- effect 
 
Member imperfections effects → neglected when considering 
frame global analysis, except → specific slender members 
 
Those cases for which it can be neglected → effect is 
presumed to be included in the appropriate buckling formula. 
 
Effect must be considered → members in sway frames 
subjected to axial compression → moment-resisting 
connections and in which: 
 

   0 5
0 5

,
,

Af Ny Sd  (alternatively N NSd cr  0 25,  or  cr cr SdN N  4) 
 
where : NSd is the design value of the compressive force 

Ncr is Euler member buckling load using the buckling 
length = the system length 
 0,5

cry NAfλ   (class 1,2 or 3 sections) is the in-plane non-
dimensional slenderness. 

 
Incorporation of the initial local member imperfection in the 
global analysis → modification of the member forces and 
moments along the entire length of the member. 
 
Local 2nd-order effect due to member deflections (also a P- 
effect) → further aggravate these changes 
 
Prudent to use a general 2nd-order analysis for very slender 
members in sway & non-sway frames. 
 



 

Care should be taken → direction of the initial bow 
imperfection may have on the resulting values of forces and 
moments in the member 
 

5. GLOBAL FRAME ANALYSIS METHODS. 
5.1 General. 
 

Actual load-deformation → use of sophisticated s methods 
 
Models → from simple elastic analysis or the rigid-plastic 
analysis to complex, elasto-plastic analysis, which can 
provide a close representation of the real behaviour of the 
structure 
 
Only one loading combination is discussed, but all loading 
combinations must be analysed 
 

5.2 Second-order effects 

 
Deflections due to the external loads modify the structural 
response and the distribution of the internal forces 
 
For frames, the most significant modifications to the linear 
response → sway & axial loads 
 
Fixed bar cantilever subject to combined axial and transverse 
loads applied at the free end, shown in Figure 12, is taken 
 
Cantilever is representative of part of the height of a column, 
i.e. from its base up to the point of inflexion near mid-height, 
in a frame structure subjected to sway displacement 



 

 
Lateral displacement of the point of inflexion will be close to 
half of the relative sway between the floor above and the floor 
below the column 
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where h is the height from the column base to the inflexion point
 is the sway relative to the column base of the infexion point  

Figure 12 - First and second order moments in a beam-column. 

 
In the presence of the axial load, the lateral (sway) 
displacement at the top of the member and the curvature of 
the member itself, 2nd-order effects in form of secondary 
moments are induced. 
 
The consequences will be that the actual deformations of the 
column under a given loading are greater than predicted by a 
first order analysis. 
 
Global second-order moment, the P- effect → relative lateral 
(sway) displacement ( ) between the member top & bottom 
 
Local second-order moment → P- effect → axially loaded 
member due to the deflections ( ) relative to the chord line 
connecting the member ends 



 

 
For frames, whilst the P- effect still arises when sway 
deformation is prevented, both the P- effect and the P-  
effect arise when sway can occur. In the case of sway of 
typical frames, the P- effect is usually much more significant 
than the P- effect 
 
Always necessary to evaluate whether sway effects in a frame 
are significant or not → P- effect needs only be considered 
for particularly slender members 
 
Both effects occur independent of whether the axial load is 
one of compression or is one of tension 
 
In terms of member stability and of overall frame stability, 
secondary effects due to tension forces  → beneficial while 
compression forces → adverse 
 

5.3 Slope-deflection method 

 
Elastic frame analysis → examining the slope-deflection 
equations for a simple beam or beam-column member 
 

5.3.1 First-order elastic analysis. 

 
The basic slope-deflection equations express the moment at 
the end of a member as the superposition of the end moments 
due to external loads on the member with the ends assumed 
fixed and of the moments caused by the actual end 
displacements and rotations 
 



 

The slope-deflection method is an application of the more 
general displacement method of first-order elastic analysis to 
plane frames in which the effects of axial and shear strain 
energy can be disregarded compared to bending strain energy 
 
Figure 13 shows the sign convention → (displacement  is 
much smaller than the member length L) 
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Figure 13 - Deformation of beam-column. 

Basic slope-deflection equations for the member: 
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        (1) 

 
Where:M AB  and M BA  are the moments at the joint nodes A & B, 
 MAB  and M BA  a fixed-end moments for member lateral 
loads alone, 
  AB L


  is the slope of the chord line AB caused by sway. 

Corresponding shear forces at the member ends are obtained 
from the following relationships: 
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VAB  and VBA , end shears → simply supported beam, span L 
 
Slope-deflection equations, shear equations and usual 
relations between axial load and axial deformation → for the 
derivation of the 1st-order stiffness matrix for each member 
 
When sway is prevented the contribution of the sway term 
(6 AB) can be omitted 
 
It is usual to analyse the sway frames structure first for all 
design loads acting but with sway prevented 
 
Sway effects → separate analysis and the results from both 
analyses are superimposed 
 
For the separate sway analysis, equations which express the 
equilibrium between the external horizontal forces acting at 
each storey (i.e. the sum of the column shears) and the 
corresponding moments in the columns in the storey are used 
 
Horizontal forces acting on the structure → first analysis as 
the values for the horizontal reactions (needed to prevent 
sway) at each floor level, but applied in the opposite direction 
 
First-order sway equilibrium equation for each floor → 
summation being over all the columns of the given storey i,: 
 



 

 M M h HAB sway BA sway
j

j
i i, , [ ]           (3) 

 
where Hi is the total external shear force acting on the floor i 
of height hi  and A & B denote the typical column j two ends. 
 
Initial fixed-end moments due to sway in each column for this 
analysis, in which further sway at every floor is prevented: 
 

M M EI
hAB BA
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  6
2

           (4) 

 
where i is the sway of the floor supported by the columns of 
storey i relative to the floor below and which is the unknown 
to be solved 
 
The approach involves carrying out a separate analysis for the 
sway of one floor at a time 
 
Final sways solved using the series of sway equations, there 
being as many equations → unknown floor sways 
 
Second-order analysis. 
 

When the P- and the P- effects are ignored, each structural 
element is characterised by a linear stiffness matrix for a first-
order elastic analysis. 
 
This approach is only acceptable only when the column 
members have relatively low axial loads. 
 
Importance of the P- axial load effect → ratio of the 
member’s axial load NAx to NE the Euler buckling load 
 



 

For a member of length L and second moment of area I, the 
Euler load is given by N

EI

LE 
2

2
 

 
Account for the P-  → modifying the terms of the linear 
stiffness matrix so that they include terms (stability functions) 
which are functions of the ratio 

E

Ax

N

N
   

 
Axial load effectively modifies the stiffness of the member 
 
Following are modified member slope-deflection equations: 
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       (5) 

 
The formulae for the terms s, c and m have values of 4, 0,5 
and 1 respectively when 0  so the equations are then the 
same as for the first-order analysis. 
 
The other terms in the equations are as defined for the first-
order analysis (see figure 13). 
 
The parameter m indicates that the fixed-end moments are 
slightly different than for the member without axial load and it 
can be expressed in terms of the parameters s and c. 
 
 
For instance, for a uniformly distributed load → 6/[s(1 + c)] 
 
Its effect is to increase the fixed end moments when the axial 
load is compressive and to reduce them when it is tensile 



 

 
Compared to those for the first-order analysis, the equations 
for the end shear forces are also modified as they now include 
a new term to account for the effect of sway. 
 
This new term represents the P- effect → axial load N is + 
for a compressive axial load, they become as follows: 
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Equations 5) and 6) indicate the most important modifications 
to the member shear and bending stiffness terms while a more 
in depth treatment shows that sway introduces other higher-
order terms into the shear and axial load stiffness terms. 
 
Resulting modified stiffness matrix for the structure as a 
whole is non-linear since the stiffness terms are now functions 
of the actual sway displacements as well as the member axial 
loads 
 
Equilibrium of the structure → deformed shape 
 
2nd-order analysis → increasing all loads incrementally and 
convergence by an iteration procedure 
Typical frames with sway where very slender columns are not 
used, since the P-  effect is negligible compared to the P- 
effect → direct use of the non-linear theory is not required 
 
Simpler approaches, based on iteration of a first-order 
analysis for instance, can be safely used 



 

 
Caution should be exercised when very slender members or 
curved members are used since the moments occurring along 
their entire lengths are modified 
 
Simpler methods of 2nd-order analysis are not usually suited 
for such special cases and the more exact second-order 
analysis may be needed 
 
Member is best modelled by a number of elements → member 
imperfections 
 
Moments/forces at the joints thus created along the member 
length as well as at its ends can be obtained from the analysis 
 

5.3.3 Equivalent lateral load approach→2nd-order analysis 
 

From figure 12, it is observed that the column base end 
moment has increased from the 1st-order: [Hh] → [Hh+P ] 
 
The effective horizontal load (shear force) was increased by 
[P/h] due to sway 
 
The approach involves using the initial values of the axial 
loads and floor sways given by a first-order linear-elastic 
analysis of the entire structure→both vertical/horizontal loads 
 
From these axial loads and sways one determines the extra 
“equivalent” horizontal force of [Pf /hs] → at the top of each 
column of each storey in the direction of the sway, figure 14 
 
In this expression, hs is the storey height of a given column 



 

and f is the relative sway between the column top and 
bottom 
 
As equal but opposite horizontal forces are applied at the 
bottom of each column, there is no increase in the resultant 
horizontal force applied to the structure as a whole 
 
All building storeys are assumed to sway in the same direction 
 
Storey shear at the top of columns is opposite in direction to 
that at the bottom of columns 
 
Total additional horizontal force at any given floor level will 
be given by the sum for all the columns of the storey below 
minus the sum for all the columns of the storey above (i.e. 
closed system of forces) 
 
A new first-order analysis is carried out so as to incorporate 
the effects of the “equivalent” horizontal loads applied at each 
floor (including those at the foundation level) 
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Figure 14 - Equivalent lateral force procedure. 

 
The procedure is repeated until the values for the floor sways 
converge to an accuracy acceptable level 
 
If it does not converge within a few iterations → structure is 
unstable 
 
After convergence the resulting internal forces/moments in 
every member now include the P- effects 
 
The initial sway displacements are denoted by  i  where i 
denotes the storey level 
 



 

Total additional storey shear for any storey level is: 
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where: Vi
'  additional shear in storey i due the sway forces; 

 Pi  sum of the column axial loads for storey level i ; 
 hi is the height of storey i which is between floors levels 
i-1 and i; 
  i , 1 i  total sway displacements of floor levels i and i-1 

respectively, relative to the foundation level (level 
0) where zero lateral movement is assumed.  

 
The total “equivalent” sway force acting at any given floor → 
difference between the “additional” storey shear from the 
columns of the storey below and above, i.e.: 
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The structure is analysed again using the 1st-order theory, 
either for the sway forces H ' acting alone and then combining 
the results with those from the 1st analysis, or including them 
in the lateral forces when all loads are acting 
 
When the  i  values at the end of a cycle are close (say within 
5%) to those given by the previous cycle → converged 
sufficiently 
 

5.3.4 Modified slope-deflection method. 
 

Sum of all the storey columns axial loads = total vertical load 
applied the storey 
 



 

When using the slope-deflection method, a simple way of 
including P-  effects is to use a modified sway equation 
expressing the lateral equilibrium of a storey i.e.: 
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where Pj

j
  is the known sum of the axial loads in the columns 

j of the storey i and  i  the storey sway i 
 
This approach leads to a sway direct solution, including the P-
  effects, without iterations 
 

6.CONCLUDING SUMMARY. 
7.  

 Approaches used for the modelling of frames for analysis, 
the basic concepts of analysis and the different methods of 
global frame analysis in use. 

 Modelling of typical frames was described with the various 
aspects to be considered such as: resistance to horizontal 
forces and accounting for imperfections. 

 Classification of frames as braced/unbraced and sway/non-
sway, the assessment of the elastic critical load, and what 
frame and member imperfections are and when to account 
for them in the global analysis,  

 Different sources of non-linear structural behaviour are 
identified 

 2nd-order effects are explained as well as its methods and 
limitations. 

 Assumptions and limitations of the various elastic methods 
of analysis are given in particular as concerns the evaluation 
of frame stability. 



 

 The idea that the choice of the analytical tool is partly 
guided by design to be undertaken and partly by the user as 
a function of software availability is introduced. The more 
sophisticated the analysis tool is, the less will be the 
resulting design tasks after the analysis. 

 Different methods, “direct” and “indirect”, for second-order 
analysis was outlined and the consequence that each has for 
the design of the frame and its components was explained 

 


