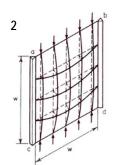
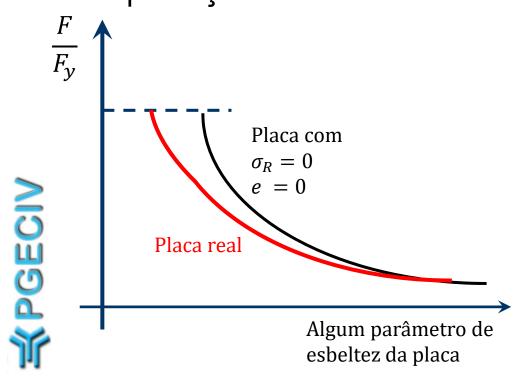


Placas - Teoria

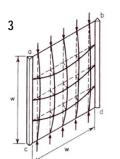
Programa de Pós-Graduação em Engenharia Civil PGECIV - Mestrado Acadêmico/Doutorado Faculdade de Engenharia – FEN/UERJ Professor: Luciano Rodrigues Ornelas de Lima



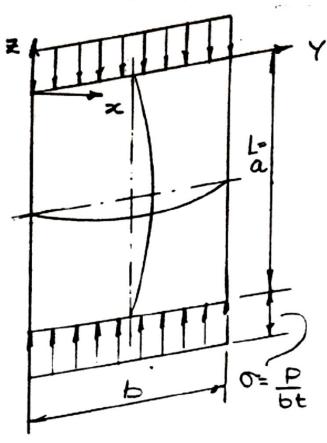
A resistência de uma placa esbelta em compressão é dependente da esbeltez, do modulo de elasticidade, da tensão de escoamento, da presença de tensões residuais e das imperfeições iniciais



Para flambagem elástica, de forma semelhante ao comportamento de colunas, uma equação diferencial pode ser desenvolvida



1. Flambagem de Placas



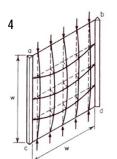
Considera-se uma placa apoiada nos quatro bordos → sem translação nem deslocamentos para fora do plano

Condições de contorno possíveis →

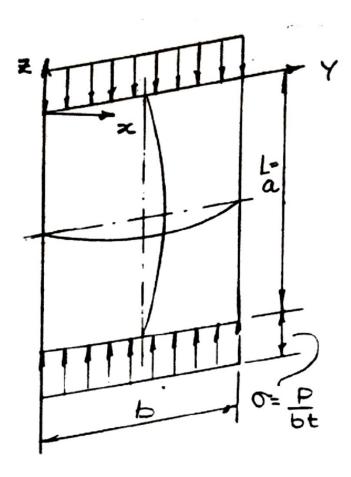
Fixa p/ translações e rotações

Fixa p/ translações (apoio simples)

Livre



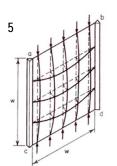
1. Flambagem de Placas



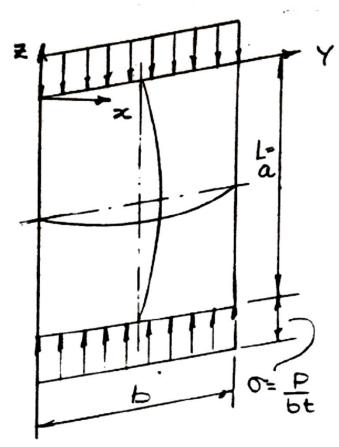
A razão a/b é chamada de razão de aspecto

Alguns autores definem esta razão de forma inversa, ou seja, b/a que tende a zero para placas muito longas e a 1 para placas quadradas

Quando a tensão crítica é atingida na placa, a mesma pode flambar como mostrado



1. Flambagem de Placas



Para a flambagem de uma coluna (ver aula de ED), tem-

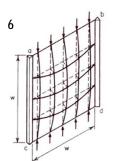
Se
$$EI_x v'^v + Pv'' = 0$$

Já para a flambagem de uma placa. A ED é da seguinte forma

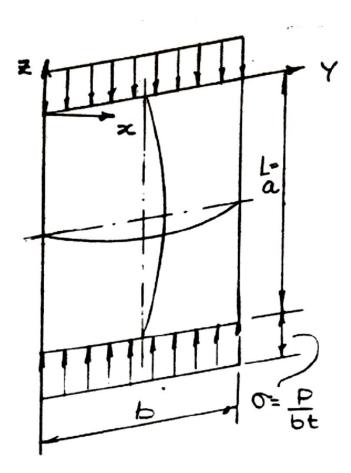
$$bD\left(\frac{\partial^4 u}{\partial z^4} + \frac{2\partial^4 u}{\partial y^2 \partial z^2} + \frac{\partial^4 u}{\partial y^4}\right) + P\frac{\partial^2 u}{\partial z^2} = 0$$

onde D é a rigidez à flexão da placa

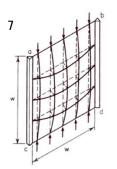
$$D = \frac{Et^3}{12(1-v^2)} : bD = \frac{Ebt^3}{12(1-v^2)} = \frac{EI}{(1-v^2)}$$



1. Flambagem de Placas

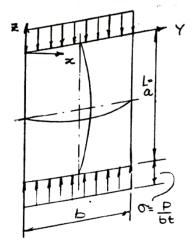


termo $(1-v^2)$ aparece devido a condição de deformações uniaxiais que existem e pelo fato de a placa, quando comprimida na direção z, estar restringida contra a expansão lateral devido a largura da mesma. A tensão na direção y vale $v\sigma_z$



以PGECIV

1. Flambagem de Placas



$$bD\left(\frac{\partial^4 u}{\partial z^4} + \frac{2\partial^4 u}{\partial y^2 \partial z^2} + \frac{\partial^4 u}{\partial y^4}\right) + P\frac{\partial^2 u}{\partial z^2} = 0$$

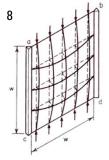
flexão longitudinal $\equiv EI_{x}v'^{v}$

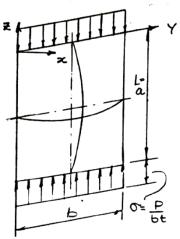
para uma coluna

resistência à torção da placa também não existindo em colunas

corresponde a $Pv'' \rightarrow$ efeito da carga distribuída

resistência à flexão lateral da placa que não existe em colunas





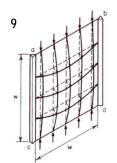
A solução para satisfazer as condições de contorno de uma placa simplesmente apoiada nas quatro faces pode ser obtida pela superposição de duas séries

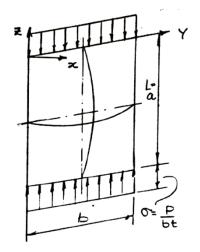
$$u = A_{mn} sen \frac{m\pi y}{b} sen \frac{n\pi z}{a}$$

sendo m e $n \rightarrow$ número de meias ondas de seno nas direções x e y

Então, tem-se que

$$P = \frac{n^2 \pi^2 bD}{L^2} \left[1 + 2 \left(\frac{mL}{nb} \right)^2 + \left(\frac{mL}{nb} \right)^4 \right]$$





Como a tensão $\sigma = \frac{P}{bt}$ e m=1 para a deformada da figura, tem-se

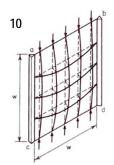
$$\sigma = \frac{P}{bt} = \frac{1}{bt} \frac{n^2 \pi^2 bD}{L^2} \left[1 + 2 \left(\frac{mL}{nb} \right)^2 + \left(\frac{mL}{nb} \right)^4 \right]$$

$$\sigma = \frac{P}{bt} = \frac{n^2 \pi^2 b \frac{Et^3}{12(1 - v^2)}}{L^2} / bt \left[1 + \frac{2L^2}{n^2 b^2} + \frac{L^4}{n^4 b^4} \right]$$

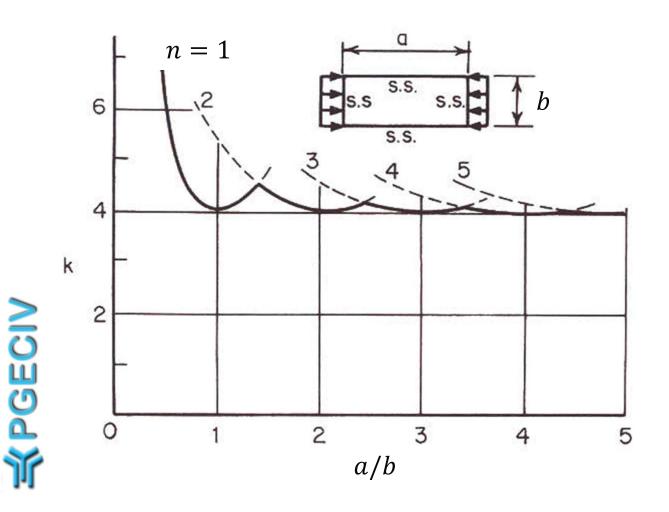
$$\sigma_{cr} = \frac{\pi^2 E}{12(1 - v^2) \left(\frac{b}{t}\right)^2} k \text{ onde } k = \frac{n^2 b^2}{L^2} \left[1 + \frac{2L^2}{n^2 b^2} + \frac{L^4}{n^4 b^4}\right]$$

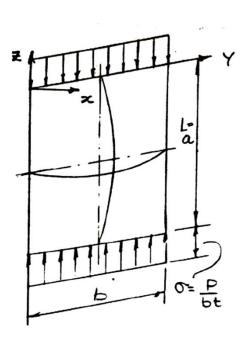
$$k = \left[\frac{n^2 b^2}{L^2} + 2 + \frac{L^2}{n^2 b^2}\right]$$

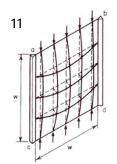
J PGECIV

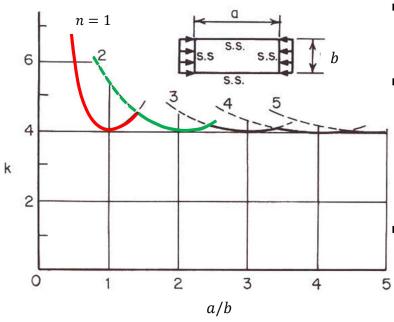


Para uma dada razão b/t, a σ_{cr} depende de k

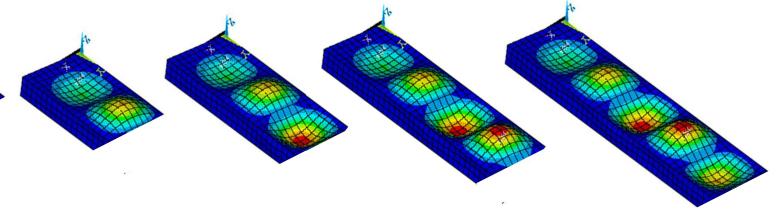


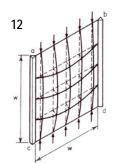


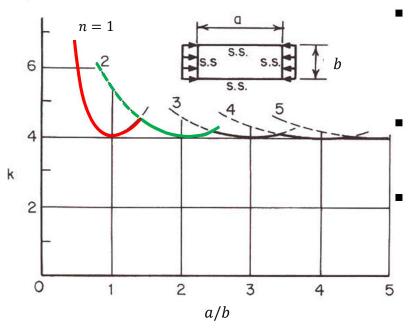




- Começando com uma placa relativamente curta, a placa sofre flambagem com uma semi-onda
 - Com o aumento de a/b, diminui-se a σ_{cr} até a razão a/b=1 correspondente a uma placa quadrada com k=4 \Longrightarrow e a seguir, aumenta-se a σ_{cr} até o limite de $a/b=\sqrt{2}$
 - A partir deste ponto, a placa flamba com duas semiondas e σ_{cr} diminui novamente até um mínimo de 4 quando a/b=2.



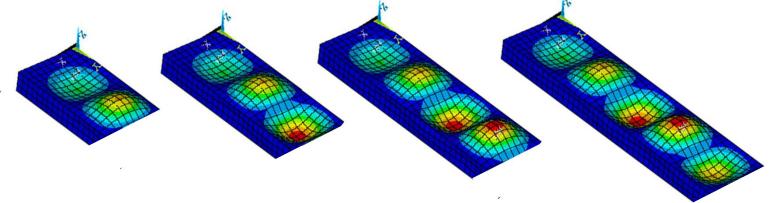


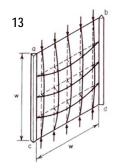


 k_{min} ocorre quando a/b é um inteiro e as semi-ondas formam um "quadrado" \Rightarrow a semi-onda transversal tem o mesmo comprimento da longitudinal

Este é o modo de flambagem mais fácil de ser desenvolvido para níveis baixos de σ_{cr}

Por outro lado, para placas longas \rightarrow flambagem com uma mesma σ_{cr} mas com mais semi-ondas





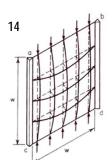
Partindo-se da $\sigma_{cr}=rac{\pi^2Ek}{12(1-v^2)inom{b}{t}^2}$ e dividindo-se ambos os termos por σ_y

$$\frac{\sigma_{cr}}{\sigma_y} = \frac{\pi^2 Ek}{12(1-v^2)(b/t)^2} \frac{1}{\sigma_y}$$

Para $\sigma_{cr}/\sigma_y=1$ \Rightarrow a placa não flamba até que σ_y seja atingida com E = 200 GPa, v=0.3 e $k=k_{min}=4$

$$\frac{b}{t} = \sqrt{\frac{\pi^2 E k_{min}}{12(1 - v^2)\sigma_y}} = \frac{850}{\sqrt{\sigma_y}} = \frac{850}{\sqrt{\sigma_y}} \frac{\sqrt{E}}{\sqrt{200000}} \quad \Longrightarrow \quad \frac{b}{t} = 1,90\sqrt{\frac{E}{\sigma_y}}$$

Cada norma tem valores específicos de b/t limites para que se atinja a tensão de escoamento σ_y do material



Para outras condições de contorno, tem-se diferentes valores teóricos de k

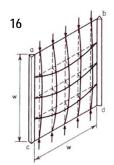
Case	Boundary condition	Type of stress	Value of k for long plate
(a)	S.S. S.S. S.S. S.S.	Compression	4.0
(b)	Fixed s.s. s.s. Fixed	Compression	6.97
(c)	s.s. s.s. Free	Compression	0.425
(d)	Fixed s.s. s.s. Free	Compression	1.277

15

1. Flambagem de Placas

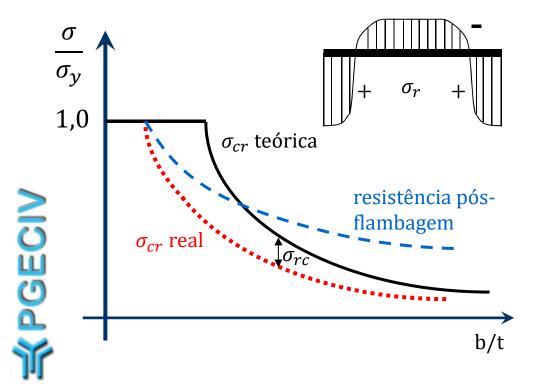
Para outras condições de contorno, tem-se diferentes valores teóricos de k

Case	Boundary condition	Type of stress	Value of k for long plate
(e)	Fixed s.s. s.s.	Compression	5.42
(f)	S.S S.S. S.S. S.S.	Shear	5.34
(g)	Fixed Fixed Fixed	Shear	8.98
(h)	S.S. S.S. S.S. S.S.	Bending	23.9
(i)	Fixed Fixed Fixed Fixed	Bending	41.8

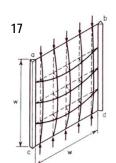


2. Flambagem Inelástica e Resistência Pós-Flambagem

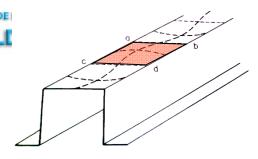
- Em ensaios, verifica-se que σ_y não é atingida para um valor de b/t devido às σ_{rc} e imperfeições geométricas iniciais
- σ_{rc} também reduz a σ_{cr} porque se prolonga para parte da largura onde a flambagem não se verifica



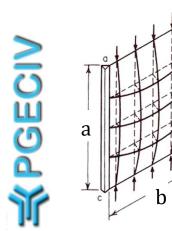
• Atingir a σ_{cr} não significa que a placa atinge a falha porque áreas próximas aos apoios podem suportar mais carga e atingirem σ_y \rightarrow resistência pós-flambagem

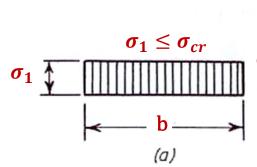


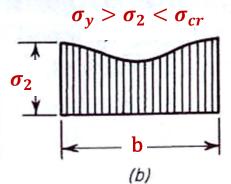
2. Flambagem Inelástica e Resistência Pós-Flambagem

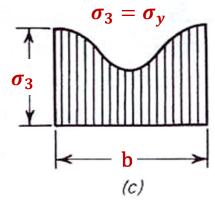


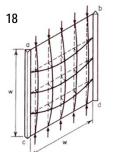
- a) Tensões uniformes até o momento da flambagem ($\sigma < \sigma_{cr}$)
- b) Início da flambagem → barras horizontais → diminuir o aumento de deflexões
- c) Após ocorrer a flambagem \rightarrow parte da carga no centro da placa transfere-se para as extremidades \rightarrow tensões não uniformes \rightarrow a redistribuição de tensões continua até que nas extremidades \rightarrow σ_y (escoamento) \rightarrow falha da placa \rightarrow Teoria de Grandes Deslocamentos



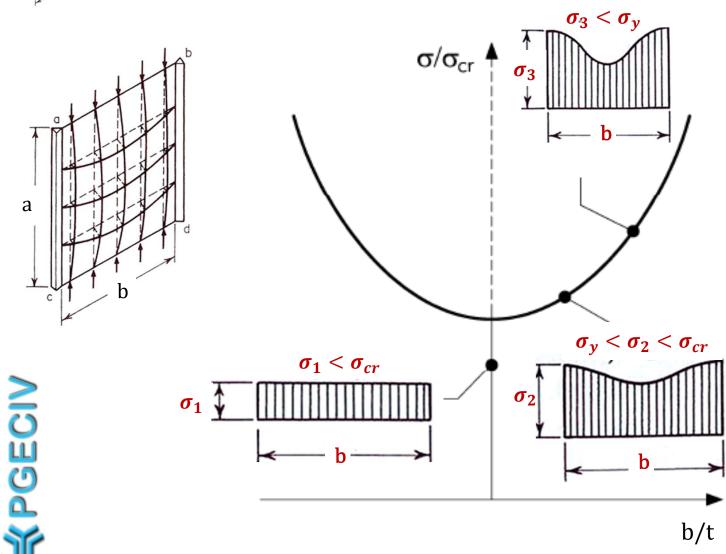


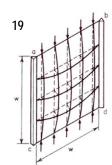


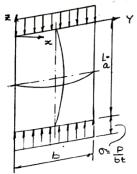




2. Flambagem Inelástica e Resistência Pós-Flambagem







von Karman em 1910

$$\left(\frac{\partial^4 u}{\partial z^4} + \frac{2\partial^4 u}{\partial y^2 \partial z^2} + \frac{\partial^4 u}{\partial y^4}\right) = \frac{t}{D} \left(\frac{\partial^2 F}{\partial y^2} \frac{\partial^2 u}{\partial z^2} - 2\frac{\partial^2 F}{\partial y \partial z} \frac{\partial^2 u}{\partial y \partial z} + \frac{\partial^2 F}{\partial y^2} \frac{\partial^2 u}{\partial z^2}\right)$$

onde F é a função de tensões na fibra média da placa e

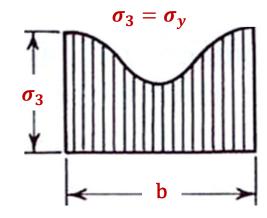
$$f_z ou \sigma_z = \frac{\partial^2 F}{\partial y^2}$$
 $f_y ou \sigma_y = \frac{\partial^2 F}{\partial z^2}$ $\tau_{yz} = \frac{\partial^2 F}{\partial y \partial z}$

$$f_y ou \sigma_y = \frac{\partial^2 F}{\partial z^2}$$

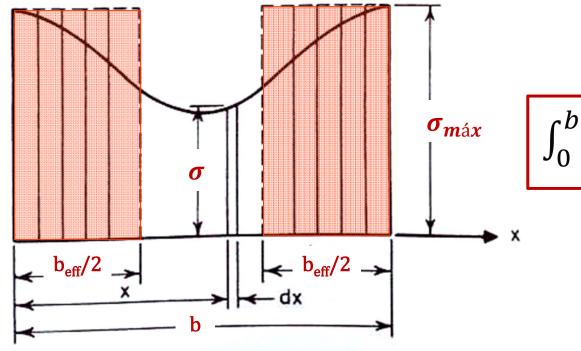
$$au_{yz} = rac{\partial^2 F}{\partial y \partial z}$$

Resolução complexa para aplicação em projeto ->

introdução do conceito de largura efetiva



- Largura b → tensões não uniformes
- Largura fictícia "efetiva" b_{eff} → tensões uniformes → $\sigma_{m\acute{a}x}$ na extremidade



$$\int_0^b \sigma \, dx = b_{eff} \, \sigma_{m\acute{a}x}$$

21

3. Conceito de Largura Efetiva

$$\sigma_{m\acute{a}x} = \sigma_y = \frac{\pi^2 E k}{12(1 - v^2) \left(\frac{b_{eff}}{t}\right)^2} : \frac{b_{eff}}{t} = \sqrt{\frac{\pi^2 E k}{12(1 - v^2)\sigma_y}}$$

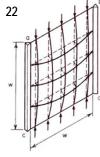
$$b_{eff} = t\pi \sqrt{\frac{Ek}{12(1-v^2)\sigma_y}} :: b_{eff} = \frac{\sqrt{k}\pi}{\sqrt{12(1-v^2)}} t \sqrt{\frac{E}{\sigma_y}}$$

e então
$$b_{eff}=Ct\sqrt{rac{E}{\sigma_y}}$$
 onde C $=rac{\sqrt{k}\pi}{\sqrt{12(1-v^2)}}$

Logo, se k=4 , tem-se que C=1.9 que fornece

$$b_{eff} = 1.9t \sqrt{\frac{E}{\sigma_y}}$$

Eq. de von Karman (1932)



Lembrando que
$$\sigma_{cr}=rac{\pi^2 E k}{12(1-v^2){\left(b/t\right)}^2}$$
 tem-se que $rac{b_{eff}}{b}=\sqrt{rac{\sigma_{cr}}{\sigma_y}}$

E definindo o índice de esbeltez normalizada $\bar{\lambda}_p = \sqrt{\frac{\sigma_y}{\sigma_{cr}}} = \frac{1,052}{\sqrt{k}} \frac{b}{t} \sqrt{\frac{\sigma_y}{E}}$

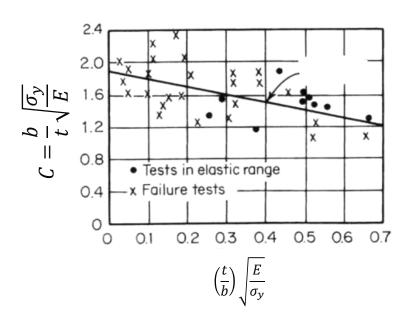
$$\bar{\lambda}_p = \frac{b/t}{28.4\varepsilon\sqrt{k}}$$

$$\bar{\lambda}_p = \frac{b/t}{28,4\varepsilon\sqrt{k}}$$
 com $\varepsilon = \sqrt{235/\sigma_y}$

E finalmente,
$$b_{eff} = \rho b$$
 e $\rho = \frac{b_{eff}}{b} = \frac{1}{\overline{\lambda}_p} \le 1$

- O valor de C do slide 21 foi definido como 1,9 para placas simplesmente apoiadas k=4 para placas longas
- Para placas com valores intermediários de b/t → eq. de Winter (1946)

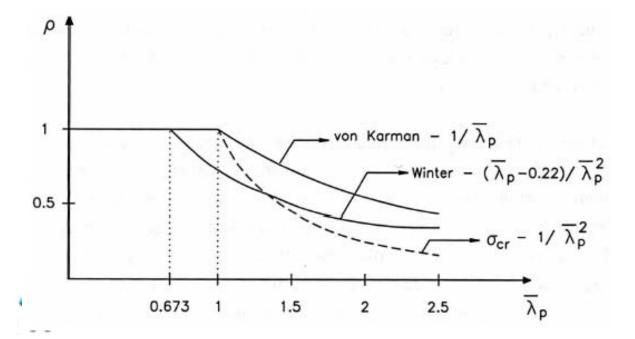
$$C = 1.9 \left[1 - 0.415 \left(\frac{t}{b} \right) \sqrt{\frac{E}{\sigma_y}} \right]$$



以PGECIV

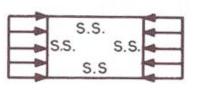
E como $\rho = \frac{b_{eff}}{b} = \sqrt{\frac{\sigma_{cr}}{\sigma_y}} \left(1 - 0.22 \sqrt{\frac{\sigma_{cr}}{\sigma_y}} \right) \le 1$ ou em termos do índice de esbeltez normalizado $\bar{\lambda}_p \Rightarrow \rho = \frac{b_{eff}}{b} = \frac{1}{\bar{\lambda}_p} \left(1 - \frac{0.22}{\bar{\lambda}_p} \right)$

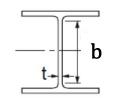
- A largura efetiva depende da tensão máxima $\sigma_{m\acute{a}x}$ na face e da razão $\frac{b}{t}$
- A largura será totalmente efetiva quando ρ for igual a 1 \Rightarrow $b=b_{eff}$
- Sendo assim, pode-se verificar isso acontece para $\bar{\lambda}_p = 0.673$ ou $\frac{b}{t} < \left(\frac{b}{t}\right)_{lim} = 16.69~\epsilon~\sqrt{k}$ com $\epsilon = \sqrt{235/\sigma_y}$



$$\rho = \frac{b_{eff}}{b} = \frac{1}{\bar{\lambda}_p} \left(1 - \frac{0.22}{\bar{\lambda}_p} \right)$$

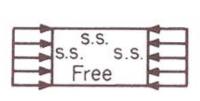
- Finalmente, substituindo-se em $\left(\frac{b}{t}\right)_{lim}=16,69~\varepsilon~\sqrt{k}~{\rm com}~\varepsilon=\sqrt{235/\sigma_y}$, tem-se
 - para k = 4 placa simplesmente apoiada \rightarrow almas de vigas (enrijecidas)





$$\left(\frac{b}{t}\right)_{lim} = 33,38\varepsilon \implies \left(\frac{b}{t}\right)_{lim} = 34\varepsilon \text{ (no EC3)}$$
classe 2

para k = 0.425 placa apoiada e livre \rightarrow mesas de vigas (não enrijecidas)

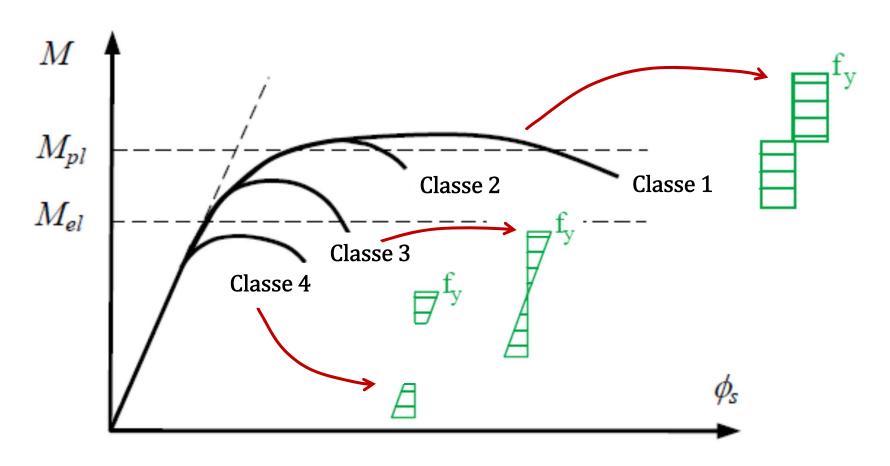




$$\left(\frac{b}{t}\right)_{lim} = 10.9\varepsilon$$
 \Rightarrow $\left(\frac{b}{t}\right)_{lim} = 10\varepsilon$ (no EC3) classe 2

26

3. Conceito de Largura Efetiva



- Classe 1 → seções → uma rótula plástica com uma capacidade de rotação necessária para o desenvolvimento de uma análise plástica sem redução da resistência
- Classe 2 → seções → uma rótula plástica mas com uma capacidade de rotação limitada devido a flambagem local
- Classe 3 → seções → escoamento na fibra extrema comprimida do elemento de aço → distribuição elástica de tensões → flambagem local impedirá → desenvolvimento do momento plástico da seção
- Classe 4 → seções → flambagem local ocorre antes do escoamento em uma ou mais partes da seção transversal → seções efetivas

