13. Dimensionamento de Soldas Soldas de Filete - Método Direcional - Eurocode 3 ✓ Uniform distribution of stress is assumed on the weld throat section leading to normal and shear stresses ✓ Normal stress parallel to the weld axis, σ is not considered ✓ Welds between parts with different material strength should be designed using properties of the lower strength material 13. Dimensionamento de Soldas Soldas de Filete — Método Simplificado - Eurocode 3 $$F_{\rm w,Rd} = f_{\rm vw.d}$$ a (4.3) a is the weld throat $f_{\rm vw.d}$ is the weld design shear strength Design shear strength $f_{\rm vw.d}$ is: $f_{\rm vw.d} = \frac{f_u/\sqrt{3}}{\beta_w \gamma_{M2}}$ (4.4) ## 13. Dimensionamento de Soldas Ligações a mesas não enrijecidas — Eurocode 3 For an unstiffened flange of an I or H section: beff ≥ (f_{y,p} / f_{u,p})b_p (4.7) where: f_{u,p} is the ultimate strength of the plate welded to the I or H b_p is the width of the plate welded to the I or H Otherwise the joint should be stiffened. Other sections i.e.box/channel sections where the connected plate width is similar to the flange width, the effective width is: b_{eff} = 2t_w + 5t_f but b_{eff} ≤ 2t_w + 5 k t_f (4.8) Even if b_{eff} ≤ b_p, the welds connecting the plate to the flange need to be designed to transmit the design resistance of the plate b_pt_pfy_ply_{MO} assuming a uniform stress distribution