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Abstract. An analytical and numerical elastic buckling study and an effective design of cold-formed thin-
walled channel beams with various flange bend shapes under pure bending are presented. Flanges of 
these beams are with open or closed bends. Buckling problems of flanges or webs of the beams are 
considered. Mathematical models of critical states for these beams are formulated and critical loads 
determined. Moreover, critical loads are calculated with the use of the Finite Strip Method – FSM and 
compared to analytical solution. Results of the numerical investigations are presented in figures. 
Effective design problem of thin-walled beams is formulated. A criterion includes two problems: 
maximization of the load and minimization of the beam cross section area. Results of the solution of the 
effective design problem are presented in figures. 

1 INTRODUCTION 

Strength and stability problems of thin-walled beams with open cross sections are intensively 
investigated since 1940’s and described in many monographs of the 20th century, for example in 
chronological order [1] - [7]. Numerical calculations of stresses and critical states of thin-walled beams 
are carried out with the use of the finite strip method (FSM) [8] or the finite element method (FEM). The 
fundamental numerical study of the local, distortional, and flexural-torsional buckling of I-beams with 
the use of the finite strip method is presented in [9]. Stability problems of thin-walled members are also 
at present investigated, selected papers are the following: [10]-[33]. Global and local/distortional 
buckling problems are described with consideration of the Generalized Beam Theory (GBT). Moreover, 
optimal design problems are also intensively developed. The first paper on optimal design of a thin-
walled beam with open cross section concerned an I-beam under pure bending [34]. Results of later 
studies of these problems are presented in the following papers: [35]-[53]. Solutions of the optimization 
tasks of thin-walled beams take into account the strength and stability constraints.  

Flanges and webs of cold-formed C-sections or I-sections are variously shaped in order to improve 
their stiffness. Evolution of section shapes of these beams is presented for example in the papers [15], 
[30] and [53]. The subject of the study includes thin-walled channel beams with open or closed bends of 
flanges under pure bending. Geometric properties are described with consideration of warping functions. 

2 GEOMETRIC PROPERTIES OF TWO CROSS SECTIONS 

Geometric properties of two cross sections of cold-formed channel beams are determined with 
respect to the principal axes y, z. The origin (the point O) and the shear centre (the point C) are located on 
the z-axis of symmetry. Scheme of two mono-symmetrical C-sections of channel beams with open or 
closed bends of flanges are shown in figure 1. 
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Figure 1: Cross sections of two channel beams with open or closed bends of flanges. 

 
Geometric properties of two cross sections are defined by the following dimensionless parameters 
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where: a and b – dimensions of the cross section, c and d – dimensions of the bend, t – thickness of 
the wall,  4122 xxataH  - depth of the beam.  

2.1 C-section with open bends of flanges 
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The location of the shear centre (the point C) 

 
A

BCB
z

CB zbydA
J

zz ~1 , where 
i

i
BC xf

xfxz
3

4
12

1~ , ixf4 - composite function. (6) 

The warping moment of inertia 
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and dimensionless warping functions:  BCz~~
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2.2 C-section with closed bends of flanges 

The formulas for geometric properties of the C-section are analogous to the ones of the C-section 
with open bends of flanges. The geometric stiffness for torsion and the warping moment of inertia are 
differently defined.  

The geometric stiffness for torsion 
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3 GLOBAL  BUCKLING 

The global buckling problem of thin-walled beams is described for example in [3], [5] and [6]. The 
lateral buckling moment of thin-walled beam under pure bending 
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where:  E – Young’s modulus,  – Poisson ratio, L – length of the beam.  

4 DISTORTIONAL  BUCKLING 

The local and distortional buckling problems are described in the papers [11], [14], [15], [17], [20] 
and [26]. This problem is also studied for thin-walled channel beams with open or closed bends of 
flanges. Scheme of displacements for distortional buckling is shown in figure 2.  
 

 
Figure 2: Theoretical shape of distortional buckling mode. 
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Functions of deflections of the flange and the web  
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where: – angle of rotation (figure 2), r – real number, m – natural number, 0 21 dbb , and 
coordinates , 10 bz aya . 

The elastic strain energy U  and the work W of the load for the beam under pure bending are 
described with the functions (12). Taking into account the principle of minimum of the total potential 
energy takes the elastic distortional buckling stress in the following form  0WU
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Numerical calculation is performed for the example steel channel beams with open or closed bends of 
flanges: , GPaE 205 3.0 , mma 100 , , mmb 100 mmc 15 , mmdmm 2510 , 

. Values of critical stresses of distortional buckling are calculated from the formula (13) and 
with the use of the finite strip method (FSM-Cufsm – B. Schafer). The comparison of results of both 
methods is shown in figure 3. Differences in critical stresses values are below five percent.  

mmt 4.1

 

 
Figure 3: Critical stresses of distortional buckling of channel beams 
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 5 EFFECTIVE  SHAPING  OF  C-SECTIONS  

Minimal manufacturing cost, minimal mass or maximal safe load are usually criterions for effective 
constructions design. The optimization criterion with regard to the papers [42], [45], [46], [47] and [53] is 
formulated in the following form  
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Strength and buckling conditions ( , where  is the moment-load) are formulated for the 

simply supported beam under pure bending.  
10 MM 0M

Effective shaping of cold-formed thin-walled channel beams with bent edges of flanges is realized for 
the family of beams: 0012.0Eall , 3.0 , , , and relative length 2.11sc 3.1432 sss ccc

0.25,0.20,0.15,0.10,5.7HL . Results of the numerical calculations of dimensionless functions 
 are shown in figure 4.  max

 

 
Figure 4: The comparison of effective channel beams with open or closed bends of flanges 
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6 CONCLUSION 

The shapes of cross sections of cold-formed thin-walled beams are rather complicated. Strength and 
buckling resistance are strictly related with the shapes of cross sections. Effective design of beams with 
respect to the criterion and the dimensionless objective function (14) enables improving the structures. 
This criterion is a quality measure for beams. Values of objective function max for the beam with closed 
bends of flanges are greater than the values for the beam with open bends of flanges (fig.4). Thin-walled 
channel beams with closed bends of flanges are decidedly better than the ones with open bends of 
flanges.  

The formula (13) described the elastic distortional buckling stress of the channel beams with open or 
closed bends of flanges. Values of stresses calculated with the use of (13) approximate the values 
calculated with the use of finite strip method (FSM-Cufsm – B. Schafer).  
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