
1085

SDSS’Rio 2010 STABILITY AND DUCTILITY OF STEEL STRUCTURES 
E. Batista, P. Vellasco, L. de Lima (Eds.) 

Rio de Janeiro, Brazil, September 8 - 10, 2010 

THIN BEAM STATIC STABILITY ANALYSIS BY AN IMPROVED 
NUMERICAL METHOD  

A. Khelil 

Nancy Université-Institut Jean-Lamour   UMR 7198,  IUT Nancy Brabois – Génie Civil 
54601 Villers Les Nancy, France 

  Abdel.khelil@iutnb.uhp-nancy.fr 

Keywords:  Finite Volume, Meshless Local Petrov-Galerkin, Static Stability, Thin Beam. 

Abstract. The finite volume meshless local Petrov-Galerkin (FVMLPG) method is a new meshless 
method for the discretization of governing differential equations. The motivation for developing this new 
method is to unify advantages of meshless methods and finite volume methods (FVM) in one scheme. The 
purpose of this paper is to develop and use of the FVMLPG method for static stability of thin beam 
problems. In this method, the weak formulation of a conservation law is discretized by restricting it to a 
discrete set of test functions. In contrast to the usual Finite Volume approach, the test functions are not 
taken as characteristic functions of the control volumes in a spatial grid, but are chosen from a 
Heaviside step function. The present approach eliminates the expensive process of directly differentiating 
the MLS interpolations in the entire domain. This method was evaluated by applying the formulation to a 
thin beam problem. The formulation successfully reproduced exact solutions. Numerical example 
demonstrates the present method yields accurate results for the critical loads. 

1 INTRODUCTION 

The finite volume meshless local Petrov-Galerkin (FVMLPG) method is a new meshless method for 
the discretization of governing differential equations. The motivation for developing this new method is 
to unify advantages of meshless methods and finite volume methods (FVM) in one scheme. The basic 
idea in the FVMLPG is to incorporate elements of the FVM into a meshless local Petrov-Galerkin 
(MLPG) method [1,2]. 

Meshless methods are very flexible because they are free of using mesh. The need for meshless 
methods typically arises if problems with time dependent or very complicated geometries are under 
consideration because the handling of mesh discretization becomes technically complicated or very time 
consuming. Fluid flows with structural interaction or fast moving boundaries like an inflating air-bag are 
of that kind for instance. 

Advantages of meshless methods are to overcome some of the disadvantages of mesh-based methods 
such as discontinuous secondary variables across inter-element boundaries and the need for remeshing in 
large deformation problems [3-7]. Extensive research on meshless methods, in particular, the meshless 
local Petrov-Galerkin (MLPG) method recently exists in literatures. There is analysis of thin beam 
problems using a Galerkin implementation of the MLPG method [9]; a generalized moving least squares 
(GMLS) approximation is used to construct the trial functions, and the test functions are chosen from the 
same space. References [8] and [9] showed good performance of the MLPG method for potential and 
elasticity problems and a good performance for beam problems. However, these methods need a large 
number of calculations to compute the first and second order derivatives of the moving least squares 
(MLS) trial functions that are required in the weak form and special procedures were needed to integrate 
the weak form accurately. 
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The purpose of this paper is to develop and use of the FVMLPG method for static stability of thin 
beam problems. The method is evaluated by applying the formulation to an example. 

The outline of the paper is as follows. First, the FV form of the governing differential equation is 
derived in a general sense, and a system of algebraic equations is developed from this FV form. Next, the 
MLPG method is used to descritize these formulations and to obtain the FVMLPG form of the governing 
differential equation. Finally, the performance of the FVMLPG method is investigated by implying to an 
example. 

2 MESHLESS INTERPOLATION 

In general, meshless methods use a local interpolation, or an approximation, to represent the trial 
function, using the values (or the fictitious values) of the unknown variable at some randomly located 
nodes in the local vicinity.  The moving least-square method is generally considered to be one of the best 
schemes to interpolate data with a reasonable accuracy.  Basically the MLS interpolation does not pass 
through the nodal data.  Consider a domain in question with control points for boundaries (i.e. nodes on 
boundaries) and some scattered nodes inside, where every node has its undetermined nodal coefficient 
(fictitious nodal value) and an influence radius (radius for local weight function).  Now for the 
distribution of trial function at any point x and its neighborhood s located in the problem domain , 
uh(x) may be defined by 
 

( ) ( ) ( )p ah Tu x x x=   sx∀ ∈Ω         (1) 

 
where pT (x) = [p1(x), p2(x), . . . , pm(x)] is a complete monomial basis of order m, and a(x) is a vector 
containing coefficients aj(x), j=1, 2, . . . , m which are functions of the space co-ordinates x.  The 
commonly used bases in 1-D are the linear basis (m=2), due to their simplicity.  In the present 4th order 
problem, we will also employ the quadratic basis (m=3) 
 

( ) 2p 1T x x x=         

              (2) 
 
and the cubic basis (m=4) 
 
 

( ) 2 3p 1T x x x x=           (3) 

 
The coefficient vector a(x) is determined by minimizing a weighted discrete L2 norm, which can be 
defined as 
 

( ) ( ) ( ) ( )
2

1

ˆp a
N

I
I I

I

J x w x x x u
=

= −           (4) 

 
where wI (x), is a weight function associated with the node I, with wI (x) > 0 for all x in the support of wI 

(x), xI denotes the value of x at node I, N is the number of nodes in s for which the weight functions wI 

(x) > 0.  Here it should be noted that ûI , I=1, 2, . . . , N, in equation (4), are the fictitious nodal values 
(undetermined nodal coefficients), and not the exact nodal values of the unknown trial function uh(x), in 
general. 
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Solving for a(x) by minimizing J in equation (4), and substituting it into equation (1), give a relation 
which may be written in the form of an interpolation function similar to that used in the FEM, as 
 

( ) ( )
1

ˆ
N

h I I

I

u x x u
=

= φ   ( ) ˆh I I
Iu x u u≡ ≠ , sx ∈Ω      (5) 

 
where 
 

( ) ( ) ( ) ( )1

1

A B
m

I
j jI

j

x p x x x−

=

φ =        (6) 

 
with the matrix A(x) and B(x) being defined by 
 

( ) ( ) ( ) ( )
1

A p p
N

T
I I I

I

x w x x x
=

=        (7) 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2B p , p , , pN Nx w x x w x x w x x= .    (8) 

 
The nodal shape function is complete up to the order of the basis.  The smoothness of the nodal shape 
function I(x) is determined by that of the basis and of the weight function.  The choice of the weight 
function is more or less arbitrary as long as the weight function is positive and continuous.  The following 
weight function is considered in the present work 
 

( )

2 3 4

1 6 8 3 0

x

0

I I I
I I I I

I I I
I

I I I I

d d d
d r h

r r r
w

d r h

ρ

ρ

− + − ≤ ≤ =

=

> =

    (9) 

 
where dI = |x − xI | is the distance from node xI to point x, hI in the nodal distance, I is the scaling 
parameter for the size of the subdomain I

tr. 

3 FVMLPG APPROACH 

Consider a thin beam as shown in figure 1.  The governing equation of an Euler-Bernoulli beam 
under a compressive axial force N is written as, [10] 
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                       Figure 1:  Transverse deformation of a thin beam under axial compression 
 
 

4 2

4 2
0

d u d u
N

dx dx
+ =   in global domain    (adimensional form)   (10)          

Where u is transverse displacement of the beam.  
 
We use the FVMLPG method to solve the homogeneous differential equation (10). The local weak form 

of Eq (10) can be obtained by multiplying a test function in this equation and integrating over 

subdomains 

 

4 2

4 2
0

Ω

+ =
s

d u d u
N vdx

dx dx
       (11) 

 
To obtain an accurate and efficient meshless method, one should decrease the order of the derivatives of 
the trial function in the local weak forms. Now a FVMLPG method is presented by redefining the original 
problem, Eq. (10), in terms of four first-order equations, with the variables i, (i=1, … , 4) as 
 

1u = φ , 1
2

d

dx

φ
= φ , 2

3
d

dx

φ
= φ , 3

4
d

dx

φ
= φ , 4 1

d

dx

φ
=  

              (12) 

In matrix notation, Eq.(11) can be written as the following form 
 

1 1

2 2

3 3

4 4

1 0 0 0 0 1 0 0 0

0 1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 1 0

0 0 0 1 0 0 0 0 1

′φ φ−

φ φ−
+ =

φ φ−

φ φ

  

 

or ij j ij j iA B f′φ + φ =             (13) 

 

Each of j is interpolated through an MLS scheme, as 

( ) ( )
1

ˆ
N

I I
j j j

I

x x

=

φ = φ φ ; sx ∈ Ω            (14) 

N
 

N
 u
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Using a test function which is a Heaviside Step function in each s [i.e., xk-1  x  xk, which may be 
overlapping subdomains as in the finite volume method], the following simple linear equation system is 

obtained for the nodal values of ˆ I
jφ  

 

1
1 1

0
k k

k

k
k k

x x
x

ij j ij j ij j ij j x
x x

A B dx B dx A
−

− −

′φ + φ = φ + φ =        (15) 

 

Equation (11) involves only the MLS interpolations for each i, (j=1, …,4), but not their derivatives. 
Thus, the Finite Volume Meshless Local Petrov-Galerkin (FVMLPG) method presented in this article is 
entirely analogous to the finite volume method [11-13]. This equation may also be written in discrete 
form 
 

( ) ( )
1

11

ˆ 0
k

k

k
k

N x xI I I
ij j ij j j

xx
I

B x dx A x
−

−=

φ + φ φ =           (16) 

 
The linear system of equations are obtained for the first term, as 

4

4 ij j
d u

K a
dx

=              (17) 

where Kij is defined by 
 

( ) ( )
1

11

k
k

k
k

N x xI I
ij ij j ij j

xx
I

K B x dx A x
−

−=

= φ + φ           (18) 

 
with the same approach, we may obtain the similar equations for the second term, as 

2

2 ij j
d u

N NC a
dx

=              (19) 

 
By adding the equations (17) and (19), we may obtain the system equations for the linear buckling 
problems, as 

( ) 0ij ij jK NC a+ =           (20) 

Equation (10) is a generalized eigenvalue problem. Its nontrivial solutions, i.e. the eigenvalues and the 

corresponding eigenvectors ( ),i
jN a , are the critical loads and the corresponding buckling modes, 

respectively. The procedure of calculation for this method is implemented in a computer code developed 
in MATLAB. The developed code was validated on a certain number of test cases by comparison with 
analytical solutions. The buckling mode shapes are shown in figures 2, 3, 4 and 5. They agree with the 
analytical solution very well.  The eigenvalues of the problem are represented in the following table. 
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Table 1 Four Eigenvalues of simply supported beam 
 

Eigenvalue 1 2 3 4 
FVMLPG 39.4816 157.9342 355.3735 631.8252 

Exact 39.4784 157.9137 355.3058 631.6547 
Error % 0.008 0.013 0.019 0.027 

 
As indicated in Table 1, the method can obtain good results in eigenvalues for the bucking of the simply 
supported thin beam. 
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Figure 2: The first buckling mode shapes of the simply supported beam 
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Figure 3: The second buckling mode shapes of the simply supported beam 
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            Figure 4: The third buckling mode shapes of the simply supported beam 
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             Figure 5: The four buckling mode shapes of the simply supported beam 
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4  CONCLUSION 
This paper presented the FVMLPG method applied to thin beam stability analysis.  The FVMLPG 

method unifies the major advantages of meshless methods and finite volume methods in one single 
scheme.  In the local weak form (LWF) of the governing differential equation, a moving least squares 
(MLS) interpolation was used to form the approximations to the solution known as trial functions.  Test 
functions, also needed for the LWF were chosen from a different space than the trial functions, making 
the method a Petrov-Galerkin method.  This choice of test functions led to unsymmetric stiffness 
matrices.  The essential boundary conditions were enforced by a collocation method, and numerical 
integration was used to evaluate the integrals in the system matrices.  With the FVMLPG, it is not 
necessary to differentiate the shape function.  In addition, the continuity requirement on the trial function 
reduces by three-order then it is possible to use a smaller support size in the meshless approximations 
with a lower-order polynomial basis.  The FVMLPG method was applied to and passed several patch test 
problems. Very good results for both the variables were obtained.  A smooth distribution of the secondary 
variable was obtained without the use of elaborate post processing techniques. 
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