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Abstract. The objective of this paper is to more fully understand local cross-section stability of hot-rolled 
steel members and more accurately account for web-flange interaction to create a more robust method 
for the design of high yield stress structural steel cross-sections that are locally slender. First, analytical 
expressions for the elastic cross-section local buckling stress, including element interaction, of hot-rolled 
steel structural shapes are provided. The expressions are based on plate buckling coefficients (k’s) 
determined by finite strip analysis (FSA). The k’s from FSA are then compared to the values inherently 
assumed in the U.S. (AISC) Specification, and significant differences are observed. Finally, a series of 
nonlinear finite element analyses are conducted to compare three commonly used design methods for 
locally slender steel beams and columns for the purpose of understanding and highlighting the 
parameters that lead to divergence between the capacity predictions of the different design methods.

1 INTRODUCTION 

Cross-section stability of structural steel and the local slenderness limits for a section to remain 
compact are function of the yield stress. As new steels are introduced and yield stress increases the 
potential for cross-section stability to control the strength also increases. Today, with the availability of 
high and ultra-high yield strength steels, it is becoming uneconomical to continue avoiding the use of 
locally slender cross-sections, which essentially ignores the beneficial post-buckling reserve that exists in 
the local buckling modes. The objective of this ongoing effort towards a fuller understanding of hot-
rolled steel cross-sectional local stability, and a more accurate accounting of web-flange interaction, is to 
create a more robust design method for high yield stress structural steel cross-sections that are locally 
slender. 

2 SLENDERNESS LIMITS OF STRUCTURAL STEEL 

2.1 Overview 

Finite strip analysis (FSA) is used to study and evaluate the slenderness limits that are currently 
defined by design codes. These codes use a single slenderness limit for each type of element, indicating a 
single value of elastic local buckling coefficient. Contrary to this, FSA results show plate buckling 
coefficients fall in a wide range. Based on the FSA results a series of simple empirical equations were 
developed to provide an approximate means of predicting the local plate buckling coefficients for all of 
the section types under different loading conditions. The equations developed were used to construct a 
proposed alternative to Table B4.1 in the AISC manual for analyzing local stability (2005 AISC manual 
of steel construction [1]). 
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2.2 AISC local buckling criteria 

In this section the local buckling width-to-thickness limits of the AISC Specification are examined, 
and a method provided for determining the assumed local plate buckling coefficients (k’s) inherent in the 
AISC Specification. Currently, the AISC Specification defines, in Table B4.1, the local buckling criteria 
in terms of width-to-thickness ratios, i.e., for an element of width b, and thickness, t: 
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The elastic critical local buckling stress of this element is: 
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where E is Young’s modulus, v is Poisson’s ratio, and k is the local plate buckling coefficient which 
accounts for the boundary conditions and loading. Plate slenderness, (e.g., see [2]) is expressed as: 
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where fy is the yield stress. Note the usual notation for plate slenderness is , but AISC uses this symbol 
for b/t, so the symbol  has been adopted here for plate slenderness. The AISC compactness limits, r 
(associated with r) define the non-slender/slender element limits for columns or the non-
compact/slender element limit for beams as: 
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where r is given for different element types and loading conditions in AISC Table B4.1. The inter-
relationship between the plate buckling coefficient, k, plate slenderness limit, r, and width-to-thickness 
ratio coefficient r may be found by substituting f  from (2) into (3) and solving for the (b/t)cr r limit of (4): 
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Using (4) and solving for k results in: 
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Implying that, if the plate slenderness limit  r is known, and given  r is provided (from AISC Table 
B4.1) then the k value assumed by the AISC Specification may be back-calculated. 

The plate slenderness limits r are generally determined from testing. For compression AISC 
employs an r=0.7 (which itself implies f =2fcr y) (e.g., see [3]). This agrees well with Winter’s equation, 
employed extensively in cold-formed steel design (2007 AISI manual [4]), where r=0.673. The k value 
assumed in AISC may now be found for any section, for example, consider the case of compression in 
webs of doubly symmetric I-shaped sections,  r is 1.49 (from AISC’s Table B4.1), which will yield a k 
value of 5.0 when using r of 0.7; which is about one-third of the way between simply supported (k = 
4.0) and fixed (k = 6.97) boundary conditions. 

For flexural members, much less is provided in the literature about the assumed plate slenderness 
limit, r. The best discussion the authors have been able to find is provided in relation to plate girders 
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where the criteria r=1.0 is clearly employed (which implies f =fcr y) [Salmon et al. 2009]. For doubly 
symmetric I-shaped sections in flexure Table B4.1 provides a r of 5.7, assuming r=1.0 results in a k of 
36, which is about 80% between the range of simply supported (k = 23.9) and fixed (k = 39.6) boundary 
conditions, and this k is consistent with the discussions in White [5] and Salmon et al. [3]. It is worth 
noting that cold-formed steel design [4] uses r=0.673 for elements in flexure as well as in compression. 

2.3 Local buckling finite strip analysis 

FSA was performed on all sections in the AISC shape database (v3) from the Manual of Steel 
Construction (excluding pipe sections) (AISC 2005 [1]). The analysis was completed using CUFSM 
version 3.12 [6]. Sections were simplified to their centerline geometry (the increased width in the k-zone 
was thus ignored) and analyzed under different loading conditions: axial compression, positive and 
negative major-axis bending, and positive and negative minor-axis bending. 

The cross-section elastic local buckling stress, fcr , is found from the finite strip analysis. The local 
buckling stress is converted into local plate buckling coefficients (k’s) for comparison to existing design 
provisions and for the development of the new approximate design expressions as follows. The plate 
buckling solution for the flange is: 
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where kf is the flange (horizontal element) local plate buckling coefficient, b is the unsupported flange 
width (i.e., ½ of b  for a W-section, b  is the total flange width), tf f f  is the flange thickness, E is the 
Modulus of elasticity, and v is Poisson’s ratio. Setting f  = fcrb cr  (from the FSA) and solving for k : f 
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Similarly, the web buckling coefficient, k , can be found, where: w 
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and setting f  = fcrh cr , we can solve for k  as: w 
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where kw is the web (vertical element) local plate buckling coefficient, h is the distance between the 
centerline of the flanges less the fillet, and tw is the web thickness. Using the full cross-section elastic 
local buckling stress, fcr , the plate buckling coefficients resulting from (8) and (10) will thus include web-
flange interaction. 

2.4 Finite strip analysis results 

Consider the AISC W-sections as an example; the flange plate buckling coefficient, kf, including 
web-flange interaction can be calculated from each finite strip analysis from (8). For the AISC W-
sections in pure compression, the resulting kf’s are provided in Figures 1(a) and (b). Figure 1(a) highlights 
that the flange plate buckling coefficient is not independent of the web slenderness h/tw, i.e., web-flange 
interaction is real and unavoidable. Figure 1(b) shows that if both web and flange slenderness are 
considered, relatively simple functional relationships may exist for predicting when local buckling 
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occurs. The web plate buckling coefficients are provided for the W-sections in pure compression in 
Figures 1(c) and 1(d). The web plate buckling coefficient is dependent on the flange slenderness, but 
again a simple combination of slenderness may adequately describe the plate buckling coefficient, as 
shown in Figure 1(d). The same observations are true for the different loading cases for all types of 
sections. 
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Figure 1: Flange and web local buckling coefficients for w-sections under axial loading. 

2.5 Comparison to AISC specification limits 

Comparison of the AISC assumed k values with those from the FSA indicates (a) the k values fall in a 
wide range and use of a single k value is bound to be quite approximate, and (b) in some cases AISC falls 
near the mean k value predicted from finite strip analysis in other cases it may be significantly higher or 
lower than the mean. For example, for tees the AISC values are quite near the mean k values, while for 
W-sections the cases of the flange in flexure and the web in compression are near the mean k values, 
while the cases of the web in flexure and the flange in compression are significantly higher 
(unconservative) compared with the mean finite strip k values. To judge the actual impact of the selected 
k values they must be taken in the context of the AISC Specification, for instance, a high k value for an 
unstiffened element may have little impact given that post-buckling of slender unstiffened elements is 
essentially ignored in the AISC Specification. Nonetheless, the lack of a consistent rational basis for the 
assumed k values employed in the AISC Specification would seem to be an impediment to advancing 
prediction of local buckling phenomenon. For a complete comparison and histograms of the k values see 
[7]. 

2.6 Development plate buckling coefficients expressions 

As shown in Figure 1 simple functional relations exist such that the local plate buckling coefficients 
can be expressed as a function of section geometry. Further, note that using the same cross-section elastic 
local buckling stress, fcr , instead of the individual f  and fcrb crh, implies that (7) and (9) must be equal, thus 
the flange and web local buckling coefficients are related by: 
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Due to (11) only one local plate buckling coefficient needs to be determined for a cross-section. 
Therefore, for each loading case, either k  or kf w was selected and a series of simple empirical equations 
were developed to provide an approximate means of predicting the local plate buckling coefficients. 
These equations represent a potential beginning for the evolution of Table B4.1 in the AISC Specification 
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for analyzing local stability. Note that the k expressions were developed to best match the results 
obtained from the FSA of the sections in the AISC shape database. Applying these expressions for 
sections with dimensions falling outside the range of the current database will need further assessment for 
accuracy. Finite strip analysis may still be used for sections or loading not covered herein. For a complete 
list of the developed equations see [7]. 

3 COMPARISON OF DESIGN METHODS FOR LOCALLY SLENDER MEMBERS 

3.1 Overview 

A series of nonlinear finite element analyses are used to compare three commonly used design 
methods for locally slender steel beams and columns. To aid the comparison of the available methods the 
design strength formulas, for locally slender W-section beams and columns, are provided in a common 
notation. The resulting design expressions highlight the prominent role of elastic cross-section stability as 
the key parameter for strength prediction. A nonlinear finite element analysis parameter study, using 
ABAQUS, is performed for the purpose of understanding and highlighting the parameters that lead to the 
divergence between the capacity predictions of the different design methods.  

3.2 Design methods 

The design of locally slender steel cross-sections may be completed by a variety of methods, three of 
which are examined in this study: (1) The AISC method, as embodied in the 2005 AISC Specification, 
labeled AISC herein, (2) The AISI Effective Width Method from the main body of the 2007 AISI 
Specification for cold-formed steel, labeled AISI herein, and, (3) The Direct Strength Method as given in 
Appendix 1 of the 2007 AISI Specification, labeled DSM herein. 

The AISC method uses the Q-factor approach to adjust the global slenderness in the inelastic regime 
of the column curve to account for local-global interaction, and further uses a mixture of effective width 
(for stiffened elements) and average stress (for unstiffened elements) to determine the final reduced 
strength. The AISI method uses the effective width approach. In the AISI method the global column 
curve is unmodified but the column area is reduced to account for local buckling in both stiffened and 
unstiffened elements via the same effective width equation. Finally, the DSM uses a new approach where 
the global column strength is determined and then reduced to account for local buckling based on the 
local buckling cross-section slenderness. 

To provide a more definitive comparison between these three methods the formulas are presented in a 
common set of notation in Table 1. The format of presentation is modified from that used directly in the 
respective Specifications so that (i) the methods may be most readily compared to one another and (ii) the 
key input parameters are brought to light. It is noted that if the cross-section local buckling (fcr) is used in 
place of isolated plate buckling solutions (f  and f ) equations become even simpler. crb crh

The number of free parameters in slender column design is actually significantly less than one might 
typically think. Based on Table 1, and performing a simple non-dimensional analysis, the parameters for 
determining the column strength of an idealized W-section are: 

AISC:  Pn/Py = f (f /f , f /f , f /fe y crb y crh y, ht /Aw g)  
AISI:  Pn/Py = f (f /f , f /f , f /fe y crb y crh y, ht /Aw g or 2b t /Af f g)  
DSM:  Pn/Py = f (f /f , f /f ,e y cr

The central role of elastic buckling prediction both globally (f
)  y

e) and locally (f , f  or fcrb crh cr) in determining 
the strength of the column is clear. Further, the “direct” nature of the DSM approach is highlighted as 
DSM only uses ratios of critical buckling values to determine the strength; where AISC and AISI still 
involve cross-section parameters beyond determination of gross area and critical stress. 
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Table 1 Comparison of column design equations for a slender W-section in a common notation 
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AISC and AISI/DSM use different formats for the global (lateral-torsional buckling) provisions of 

beams. However, for no moment gradient (Cb = 1) the resulting expressions are actually quite similar 
with the exception that AISI only provides capacities up to first yield (My) for sections subject to lateral-
torsional buckling. For AISI/DSM local-global interaction in beams is treated in the same conceptual 
manner as for columns; not so for AISC, which uses nothing like the Q-factor approach, and instead 
provides direct reductions based on the flange and web plate slenderness (see [5]). A result of AISC’s 
approach (i.e., not adopting one consistent philosophy for local-global interaction in beams) some 
unusual changes and discontinuities in strength prediction occur as local slenderness is varied. 

3.3 FE parameter study 

A nonlinear finite element (FE) analysis parameter study was carried out for the purpose of 
understanding and highlighting the parameters that lead to the divergence between the capacity 
predictions of the different design methods under axial and bending loads. The FE analysis was 
performed on both short members where only local buckling modes exist, and long members, where the 
locally slender cross-sections may interact with global (flexural, lateral-torsional, etc.) buckling modes. 
Based on the authors’ judgment, AISC W14 and W36 sections were selected for the study as representing 
“common” sections for columns and beams in high-rise buildings. The W14x233 section is 
approximately the average dimensions for the W14 group and the W36x330 for the W36 group.  
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Geometric variation: To examine the impact of slenderness in the local buckling mode, and the 
impact of web-flange interaction in I-sections, four series of parametric studies are performed under axial 
and bending loading: W14FI
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: a W14x233 section with a modified Flange thickness, that varies 
Independently from all other dimensions, W14FR: a W14x233 section with variable Flange thickness, 
but the web thickness set so that the Ratio of the flange-to-web thickness remains the same as the original 
W14x233, W36FR: a W36x330 section with variable Web thickness, but the flange thickness set so that 
the Ratio of the flange-to-web thickness remains the same as the original W36x330, and W36WI: a 
W36x330 section with a variable Web thickness, that varies Independently from all other dimensions. 

Modeling: ABAQUS was used to perform the analysis. Members were modeled using S4 shell 
elements. The choice of element type and density are based on a comparison study for different FE 
elements reported in [8]. All sections are modeled with globally pinned, warping fixed boundary 
conditions, and loaded via incremental displacements. The material model follows classical metal 
plasticity. The classic residual stress distribution of Galambos and Ketter [9] is employed. Initial 
geometric imperfections are added through linearly superposing a scaled local and a scaled global 
eigenmode solution from a FSA performed on each section, using CUFSM. The local buckling mode is 
scaled so that the maximum nodal displacement is equal to the greater of bf /150 or d/150, while the 
global buckling mode is scaled so that the maximum nodal displacement is L/1000. 

3.4 Results 

The parametric study focuses on W14 and W36 sections, where through modification of element 
thicknesses, the flange slenderness, and/or web slenderness are systematically varied (from compact, to 
noncompact, to slender in the parlance of AISC). Due to limited space, as a sample, the results of the 
parametric study are presented for each group, including comparisons to the AISC, AISI, and DSM 
design methods for the stub columns in Figure 2. Results are plotted as a function of elastic local 
slenderness of the cross-section: fy/fcrl , determined by finite strip analysis. See [8] and [10] for full 
results and discussion. Generally, results indicate that AISC is overly conservative when the flange is 
slender; AISC’s assumption of little to no post-buckling reserve in unstiffened elements is not borne out 
by the analysis. AISI’s effective width method is a reliable predictor; only for the beam studies does AISI 
provide overly conservative solutions when the web is compact but the flange slender. DSM provides 
reliable predictions when both flange and web slenderness vary together, but is overly conservative when 
one element is significantly more slender than another. 
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Figure 2: Results of stub c lumn parametric study 
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4 CONCLUSIONS 

Consideration of local buckling is an important part of the des eel shapes. The 
primary means for consideration of local buckling in the AISC Sp e of width-to-
thickness limits for each element of a cross-section. It is shown herein that this method assumes that a 
unique plate buckling coefficient, or k value, exists for each element of a section, and that the web-flange 
interaction is thus fixed. However, as demonstrated with finite strip analysis, the local plate buckling 
coefficients vary widely for a given section and loading. Nonetheless, the variation in k may be expressed 
as a function of the member geometry and loading and simple relations are provided for such k, which 
include web-flange interaction. The developed expressions provide a potential first step towards 
rationalizing the AISC Specification approach to local buckling limit states across the different sections. 
The design of locally slender steel cross-sections may be completed by a variety of methods, yet the key 
parameters are the elastic local (element, or member) buckling stress and the material yield stress. A 
parametric study conducted with nonlinear finite element analysis is used to examine the performance of 
available design methods as a function of local cross-section slenderness. The results, presented only in 
brief here, demonstrate that the AISC methodology may be overly conservative, and provide a basis for 
imp oving the Direct Streng tions.  
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