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Abstract. Cold-formed steel members are characterized by the slenderness and the facility of fabrication 
in different geometries. On the other hand, the use of slender members results in the interaction of 
different buckling modes, making the analysis of thin-walled members a complex task. Pure buckling 
mode calculation helps in better understanding the behavior of these members. In this paper, the critical 
buckling load calculation of specific and combined modes has been carried out using the finite element 
method for a lipped channel section subjected to a compressive axial load. The deformation fields of the 
finite element model are constrained according to the analyzed mode. The combined mode calculation 
enables the quantification of the interaction between the considered modes. Results for two different 
boundary condition configurations of member ends are shown. Finally, the potentiality of the procedure 
proposed herein is discussed. 

1 INTRODUCTION 

Cold-formed steel members, or thin-walled members, are characterized by the slenderness and by the 
facility of production in different cross-sectional geometries. These members are a thin and economic 
option for the modern steel construction. On the other hand, the use of thin plates in the fabrication of 
these members results, many times, in a high width-to-thickness ratio of the plate elements that make up 
the section. Therefore, besides global buckling, cold-formed members under compressive stresses are 
very susceptible to the local buckling of plate elements and to distortional buckling of the cross-section. 

Although global, distortional and local modes are widely accepted phenomena that are normally 
handled in design specifications, there are no general methods for the calculation of theses three 
characteristic modes. Furthermore, there is a lack of clear definitions for these three types of pure 
buckling modes. Bearing in mind that these pure modes can interact, we can say that the analysis of thin-
walled members is at least complex. 

Numerical methods are usually used in the analysis of thin-walled members, namely the finite element 
method (FEM), the finite strip method (FSM) [1] and the generalized beam theory (GBT) [2]. The GBT 
is the only known method that inherently can produce and isolate solutions for all common buckling 
modes: global, distortional or local. However, its applications are limited. The ideal scenery in the 
analysis of cold-formed members would be a general solution method, like FEM, that could give us the 
critical loads of pure buckling modes. 

Ádány and Schafer [3] have proposed a new approach that enables the decomposition of a stability 
problem solution of an open cross-section thin-walled member into pure buckling modes, or into 
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individual modes (modes inside the vector space of a pure mode). The definitions of pure buckling modes 
rely on mechanical assumptions of GBT. The deformation field of the numerical model is then 
constrained in accordance with the assumptions that underlie global (G), distortional (D), local (L) or 
other (O) modes. The implementation of theses concepts has been accomplished in the FSM context, by 
the use of CUFSM software [1], giving rise to the constrained finite strip method (cFSM). More recently, 
a proposal of extending the constraining process of cFSM to FEM has been presented by Casafont et al. 
[4]-[5]. The procedure allows the critical load calculation of individual buckling modes through the 
constraining of finite element models. 

This paper aims to obtain the critical loads of individual or combined buckling modes of open cross-
section thin-walled members, by constraining finite element models. With this goal, general concepts of 
the constraining procedure of Ádány and Schafer have been used, and a methodology using Ansys 
software (http://www.ansys.com/), similar to that of Casafont, has been employed. The combined mode 
calculation using the presented procedure enables the quantification of the interaction between modes.

Taking a lipped channel section in pure compression as example, the critical load calculation of 
individual G, D and L modes and a combination of D and L modes has been accomplished. Two different 
boundary condition configurations of member ends have been considered. 

2 CONSTRAINED STABILITY PROBLEM 

This section introduces the basic constraining procedure of a stability problem that provides means 
for the solution to be focused on a pure buckling mode (or on a combination of any individual modes). 
The procedure is the same that has been proposed by Ádány and Schafer [3] for the cFSM. Mechanical 
assumptions of GBT are used to define the pure G and D modes. If some of these assumptions are 
released, it is also possible to define L and O modes. 

The mechanical assumptions that underlie the pure modes are employed as constraint equations on 
the deformation fields. Therefore, the general degrees of freedom (DOFs) of the problem, denoted by 
vector d, can be related to a reduced number of DOFs that define the deformation field constrained 
according to a pure mode (vector dM). For this, a constraint matrix RM is defined as in Eq. (1). The 
subscript M represents the constraint to a pure buckling mode: G, D, L or O. Thus, one can construct 
constraint matrices associated to each of these buckling modes. 

= M Md R d (1) 

The linear stability problem (generalized eigenvalue problem) given by Eq. (2) can be focused on a 
pure buckling mode through the application of Eq. (1), resulting in a constrained eigenvalue problem, 
which is given by Eq. (3). Ke is the elastic stiffness matrix, Kg is the geometric stiffness matrix, Ke,M = 
RM

TKeRM, Kg,M = RM
TKgRM and λ is an eigenvalue that satisfies the considered equation. 

λ=e gK d K d (2) 

λ=e,M g,MM M
K d K d  (3) 

After solving Eq. (3), the pure mode can be described by general DOFs of the model through Eq. (1). 
Thus, dM can be interpreted as a vector of generalized coordinates, depending on the basis used for 
defining the RM matrix. The columns of RM are individual deformation modes that form a basis for the 
reduced space of the pure mode M. The G, D, L and O spaces together span the entire space of original 
DOFs of the problem, or, in other words, they represent a transformation of the solution to a basis where 
G, D, L and O spaces are segregated (Eq. (4)). 

Eq. (4) clearly shows that one can define a generic constraint matrix using any of the columns of RG, 
RD, RL and RO. It means that it is possible to construct a constrained eigenvalue problem as in Eq. (3) 
whereby the solution is focused on any individual deformation mode or on any combination of individual 
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modes. Additional transformations inside G, D, L and O spaces are possible. If orthogonal deformation 
modes are used in the definition of the constraint matrices of Eq. (4), and a normalization scheme is 
applied (orthonormal bases), the vector {dG dD dL dO}T will give the contribution of each individual 
deformation mode for the general solution of the problem of Eq. (2) (buckling mode). 

[ ]=

G

D
G D L O

L

O

d

d
d R R R R

d

d

 (4) 

Orthogonal bases for G, D, L and O spaces can be defined from the eigenvectors of Eq. (3). The 
procedure is described in [3], where these modal bases are called orthogonal axial modes, since they are 
defined for a member under axial load. Three normalization schemes are used in CUFSM: 

1. Vector norm (VN): the base vectors are normalized by setting dTd = 1. 
2. Strain energy norm (SEN): the base vectors are normalized by setting dTKed = 1. 
3. Work norm (WN): the base vectors are normalized by setting dTKgd = 1. 

3 METHODOLOGY 

3.1 Model under study 

In this paper, the analyses have been carried out for a lipped channel section subjected to uniformly 
distributed compressive axial loads at the member ends. Fig. 1(a) shows the section dimensions in mm. 
The section is the same that has been studied by Casafont et al. in [4]. 

Figure 1: (a) Analyzed cross-section. (b) Finite element mesh. (c) End boundary conditions for a simply 
supported member. (d) Additional end boundary conditions for a clamped member. 

The member has been modeled using 4-node, 24-DOFs shell elements, with a maximum size of 5 
mm, with the use of Ansys. Fig. 1(b) illustrates the finite element mesh of a member with an arbitrary 
length L. Figs. 1(a) and 1(b) indicate the DOFs utilized in the derivation of the constraint matrices (U, V, 
W e θ); these are the FSM DOFs. It should be noted that the coordinate system is the same of [3]. 

Two different kinds of boundary conditions have been considered: (1) simply-simply supported 
member (S-S) and (2) clamped-clamped supported member (C-C). The boundary conditions at the model 
ends for the S-S member are shown in Fig. 1(c), where the Poisson effect is free to take place. Besides the 
boundary conditions already shown in Fig. 1(c), the constraints of Fig. 1(d), regarding local rotation of 
the plates and the warping, must be added at the ends of C-C member model. 

A linear buckling analysis has been carried out in order to obtain the critical loads. First, a linear 
elastic analysis is performed, giving rise to the geometric stiffness matrix. Subsequently, an eigenvalue 
problem is solved to obtain the buckling modes and the associated critical loads. It should be pointed out 
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that, for the C-C member, the null warping at member ends can only be applied after the linear elastic 
analysis. For the S-S member, any longitudinal constraint should be deleted after the linear elastic 
analysis, unless the warping of the analyzed mode is null where the constraints are applied. 

3.2 Constraining the finite element mesh 

This section presents the methodology employed to constrain the finite element models according to 
individual or combined buckling mode. The constraint matrices of Eqs. (1) and (4) have been derived at 
cross-section level in [3], where the context has been the FSM. In order to extend the constraining 
procedure to the FEM, the variation of displacements along the member length must be considered. 

As an example, Eq. (4) is written using only two columns of constraint matrices (individual 
orthonormal modes) and taking into account the longitudinal variation of displacements (Y direction). At 
this point, it is important to treat transversal DOFs (U, W and θ) and longitudinal DOFs (V) separately: 
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β1 and β2 are the contribution coefficients of modes R1(Y) and R2(Y); ψ1(Y) and ψ2(Y) are the 
functions defining the variation of displacements in Y direction of Fig. 1 (shape functions), which are 
usually assumed to be harmonic; r1 and r2 are the numbers of half-waves of the two considered functions. 
The columns of the constraint matrices have been partitioned into vectors referring to the different types 
of DOFs. It should be noted that V DOFs vary according to the derivatives of ψ1(Y) e ψ2(Y). Shape 
functions for different kinds of boundary conditions of member ends can be found in [6]. 

Since it is not possible to transform the stiffness matrices in Ansys (as in Eq. (3)), the constraints have 
to be applied through DOFs relationships between the nodes. Eq. (5) gives the distribution of 
displacements U, V, W and θ at a generic section of the model. Recognizing this, one DOF of each 
section must be assumed as the unknown DOF in the eigenvalue analysis. As U, W and θ have a 
longitudinal variation that is different from that of V, it is appropriate to uncouple V from the other 
DOFs. Therefore, two unknown DOFs per section are considered. 

The DOFs V and θ of node 1 of each section (Fig. 1(a)) are chosen to be the unknowns. Thus, the 
DOF Vis, corresponding to a node i of a section s, can expressed in function of V1s (node 1 of section s) 
as shown in Eq. (6). RV1,i, RV2,i, RV1,1 and RV2,1 are components of vectors RV1 e RV2 referring to nodes i 
and 1; Ys is the coordinate of the section in the model. 
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The generic DOFs Uis, Wis and θis must be related to θ1s similarly as in Eq. (6). Reading this equation, 
it can be noted that if just one unknown per section is chosen (e.g., θ1s), a ratio between shape functions 
and its derivatives will be set, thereby prohibiting application of constraints at some coordinates Ys [4]. 

It is also interesting to observe that if only one deformation mode is considered in the analysis 
(constraint matrix with only one column), the approach that uses two unknowns per section results in a 
solution with a number of half-waves directly calculated by the FEM program. 

Two constraining schemes have been used herein. The first is the same that has been used by 
Casafont et al. in [4]-[5], whereby only a few nodes of a few sections of the model are constrained. Fig. 
1(a) exhibits the 9 constrained nodes of each section, with only one intermediary node (subnode) in the 
web and the flanges. The constraints have been applied every 10 mm for members with L ≤ 200 mm and 
every 25 mm when L > 200 mm (see an example of marked sections in Fig. 1(b)). In the second scheme, 
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all nodes of the mesh have been constrained. It should be remarked that although all the nodes have been 
constrained, the constraints have been applied only to the FSM DOFs, i.e., two DOFs per node have 
remained free. Throughout this paper, the first scheme is called “1 Sub” and the second “Fully”. 

The individual deformation modes (columns of the constraint matrix) used in the analyses herein have 
been taken from the routines of CUFSM software, implemented in Matlab (http://www.mathworks.com/) 
and freely available from Schafer in http://www.ce.jhu.edu/bschafer/cufsm/. For G and D modes, only the 
warping distributions have been taken (DOFs V), since the other DOFs (U, W and θ) can be expressed as 
a function of V [3]. Therefore, for these modes, U, W and θ have been internally determined in Ansys by 
accessing the stiffness matrices in a substructure analysis. 

In order to calculate the contributions of the individual deformation modes in a buckling mode 
(coefficients β in Eq. (5)), an optimization using the genetic algorithms method has been conducted. The 
coefficients have been combined such that the critical load has been minimized. The implementation has 
been carried out in Matlab. 

4 RESULTS 

Fig. 2 illustrates the critical load results of individual deformation modes for the S-S member, using 
the constraining schemes 1 Sub and Fully. A comparison with results provided by cFSM (CUFSM) and 
GBT using GBTUL software (http://www.civil.ist.utl.pt/gbt/) has been made. In order to compare the 
results to the ones provided by CUFSM, buckling taking place in only one half-wave along the member 
length has been considered. Thus, results have been presented as a function of the buckling length. 

Figure 2: Critical loads of individual deformation modes for the S-S member. (a) First G mode. (b) First 
D mode. (c) First L mode. (d) Individual modes results comparison with all modes curve. 

Using the orthogonal axial modes [3] taken from the CUFSM routines, results have been obtained for 
the first G mode (flexural-torsional), the first D mode and the first L mode (Figs. 2(a), 2(b) and 2(c), 
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respectively). The transversal deformations of each individual mode along with the warping distributions 
(zero for the L mode) are exhibited in the insets of the corresponding charts, with an arbitrary magnitude. 
It should be noted that the distributions of transversal displacements for L mode depends on the half-
wavelength. Nevertheless, this dependency is weak for lengths of practical importance. In Fig. 2(c), the L 
mode for a buckling length of 100 mm is shown. 

In Fig. 2(d), the critical load results of individual G, D and L modes obtained using the Fully scheme 
are compared with the finite element results considering the contribution of all modes, i.e., results of an 
unconstrained analysis. In this chart, it is possible to have an idea of the interaction between the modes. 

In Fig. 2(c), an alternative constraining scheme, compatible with L deformation modes, has been 
employed (“Direct” scheme). Constraints have been applied directly to the DOFs of the model, as 
depicted in Fig. 3. Firstly, a linear elastic analysis is solved, giving rise to the geometric stiffness matrix 
(Fig. 3(a)). Subsequently, translational constraints are applied to all nodes of the mesh such that the 
mechanical assumptions that define L modes [3] are obeyed (Figs. 3(b) and (c)). 

Figure 3: Direct constraining scheme for local deformation modes (S-S member). 

The results obtained using the Fully scheme are close to FSM results, at least for buckling lengths of 
practical importance. For G mode, the difference is no more than 2% for lengths up to 5 meters, covering 
all the range where flexural-torsional mode is the controlling buckling state. For D mode, the difference is 
2,73% for the 200 mm length, which is near the critical length. For L mode, the difference is 1,64% for 
the 70 mm length, near the critical one for this mode. The differences increase for lengths smaller than the 
critical for D mode and for long lengths for G mode. The 1 Sub scheme is an approximation of Fully, 
showing accuracy problems for lengths smaller than the critical for D mode. For L mode, the Direct 
scheme has provided the best results. However, such scheme can only be employed in an analysis 
considering only the first L mode. Therefore, the Direct scheme does not work in an analysis considering 
a specific individual deformation mode or a combination of modes. 

Figure 4: C-C member results. (a) Critical load of the first L mode. (b) Deformed shape of the 200 mm 
length member for combined mode calculation. 

The critical loads of individual deformation modes have also been obtained for the C-C member, 
using the schemes 1 Sub and Fully (and also Direct for L mode). Similarly as for S-S member, the 
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orthogonal axial modes have been taken from CUFSM routines, but the stiffness matrices have been 
modified to be compatible with the new boundary conditions. 

Results for C-C member can not be compared with those provided by CUFSM, since this software 
assumes that the longitudinal displacement distribution is sinusoidal, what is not compatible with C-C 
boundary conditions. Taking into account the more complex longitudinal displacement variation, the 
critical load results must be exhibited as a function of the member length. Fig. 4 shows the results for the 
first L mode. It is desirable to compare FEM results with those from FSM, since both methods employ 
the same element type. In despite of this, comparison with GBT results can give an idea of the validity of 
the method. The difference between Fully scheme and GBT is at most 4%, for the greater lengths. 

Taking the first D mode and the first L mode from the orthogonal axial modes set (insets of Figs. 2(b) 
and 2(c)), the critical load of the combined mode has been calculated. A normalization scheme is needed 
in order to handle combined modes; two schemes have been considered herein: VN and WN. Tabs. 1 and 
2 list some critical loads (Pcr) of the combined mode for S-S and C-C members, comparing the results 
with those provided by cFSM and GBT. Only the results for 1 Sub constraining scheme are presented. 

Table 1: Critical loads of combined mode calculation for the S-S member. 

cFSM - WN GBT FEM – WN 
L [mm] 

Pcr [N] %D %L Pcr [N] Pcr [N] %D %L 

100 22870,3 19,5 80,5 22692,48 22571,4 23,6 76,4 

150 26043,6 53,7 46,3 25373,02 24921,3 58,3 41,7 

200 26932,8 73,3 26,7 26270,56 25876,4 75,6 24,4 

300 34293,3 83,9 16,1 33921,07 33754,1 84,7 15,3 

500 68869,7 86,9 13,1 68709,6 68886,4 87,3 12,7 

800 158693,7 87,5 12,5 158590,2 159175,7 87,8 12,2 

Table 2: Critical loads of combined mode calculation for the C-C member. 

GBT FEM - VN 
L [mm] 

Pcr [N] rD rL Pcr [N] %D %L 

100 29911,6 1 1 30247,6 10,24 89,76 

150 25334,9 2 2 25529,9 7,78 92,22 

200 23605,4 1 3 23773,7 36,79 63,21 

300 21911,9 2 4 22057,0 36,31 63,69 

500 21293,3 5 7 21434,7 23,40 76,60 

800 21055,8 9 11 21212,6 20,12 79,88 

For S-S member, the analyzed lengths represent the buckling length, which is the same for both 
individual deformation modes. The contributions of modes D and L (%D and %L) for S-S member have 
been compared with the values given by CUFSM, for WN normalization scheme (which does not depend 
on the discretization). For C-C member, the analyzed lengths represent the member length, and the shape 
functions of the individual modes can have different numbers of half-waves. Again, C-C member results 
can only be compared with those of GBT. Based on the number of half-waves obtained for each 
individual mode in GBTUL (rD e rL), the shape functions for these modes have been defined in the 
constrained finite element model. Recognizing that GBTUL does not employ the same normalization 
schemes of CUFSM, the contributions comparison with FEM results has not been carried out. 

The genetic algorithm method has only been employed in C-C member analysis, where the desired 
buckling mode is always the first. Results of Tab. 2 refer to an arbitrary algorithm run, and can be refined. 

The critical load calculation of the combined mode with constraining scheme 1 Sub has yielded good 
results for the analyzed lengths. The greater difference has been 4,3% in comparison with cFSM, for the 
150 mm length S-S member. The contributions of modes for S-S member calculated by FEM have shown 
a little difference in comparison with cFSM for the smaller lengths. This difference can be reduced if the 
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Fully constraining scheme, for instance, is used, since the 1 Sub scheme does not approximate well the 
critical loads of D mode for lengths smaller than the critical (Fig. 2(b)). 

Different normalization schemes lead to different mode contributions results. VN scheme is 
dependent on the discretization and does not have physical meaning, what makes WN scheme preferable 
at first. However, the WN could not be used in C-C member analysis because, in general, each individual 
mode has a different associated geometric stiffness matrix. Therefore, the results of Tab. 2 refer to the VN 
scheme. It also should be observed that, in C-C member analysis, the consideration of a greater number of 
harmonic components of the shape functions may be important, as discussed in [6]. Fig. 4(b) illustrates 
the buckling mode of the 200 mm length C-C member for the combined mode calculation. It is clearly 
seen that there is a mix of a D mode taking place in one half-wave and a L mode with three half-waves.

5 CONCLUSION 

This paper presents examples of critical load calculations of specific buckling modes of open cross-
section thin-walled members by the use of the finite element method (FEM). In other words, it is possible 
to calculate the critical load of individual deformation modes belonging to groups of global, distortional, 
local or other modes. The calculation of any combination of modes can also be accomplished. 

The numerical model is constrained such that its deformation fields are consistent with the desired 
mode, based on the concepts of constrained finite strip method (cFSM) [3]. The employed methodology 
is similar to that of Casafont et al. in [4]-[5], but the used individual modes have been the orthonormal 
modes suggested by Ádány and Schafer [3]. The procedure has been extended to other boundary 
conditions and to the evaluation of the contributions of individual modes in a general solution. 

The individual and combined mode calculations using FEM have shown good results in comparison 
with those provided by cFSM and GBT, at least for buckling lengths and member lengths of practical 
importance. It should be pointed out that a study of more cross-sections is still needed. 

The results presented herein mark the beginning of a longer research. The extension of cFSM 
concepts to FEM provides the ability of analyzing members with any boundary condition configuration 
and non-uniform members (e.g., members with holes).

REFERENCES 

[1] Schafer, B.W. and Ádány, S., “Buckling analysis of cold-formed steel members using CUFSM: 
conventional and constrained finite strip methods”, 18th International Specialty Conference on 
Cold-Formed Steel Structures, Orlando, Florida, October 26-27, 2006.  

[2] Silvestre, N. and Camotim, D. “First-order generalised beam theory for arbitrary orthotropic 
materials”. Thin-Walled Structures, 40, 755-789, 2002. 

[3] Ádány, S. and Schafer, B.W. “A full modal decomposition of thin-walled, single-branched open 
cross-section members via the constrained finite strip method”. Journal of Constructional Steel 
Research, 64, 12-29, 2008. 

[4] Casafont, M., Marimon, F., Pastor, M.M. “Calculation of pure distortional elastic buckling loads of 
members subjected to compression via the finite element method”. Thin-Walled Structures, 47, 
701-729, 2009. 

[5] Casafont, M., Pastor, M.M., Caamaño, E., Marimon, F., “Linear buckling analysis of compressed 
members combining the generalised beam theory and the finite element method”, Proceedings of 
the Twelfth International Conference on Civil, Structural and Environmental Engineering 
Computing, Civil-Comp Press, Stirlingshire, Scotland, 2009. 

[6] Li, Z., Buckling Analysis of the Finite Strip Method and Theoretical Extension of the Constrained 
Finite Strip Method for General Boundary Conditions, Research Report, Johns Hopkins University, 
2009. 




