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Abstract. The use of cold-formed steel members has great application at the present time, such as in 
standard civil buildings (residential and industrial buildings) and in mechanical structures (structures of 
vehicles like: trucks, bus, wagons, etc.). A high structural performance for profiles is a required 
economic demand in present days. In this sense, the present work intends to explore the possibilities of 
parametric optimization of cold-formed steel channel and lipped channel members when submitted to 
compression, with the objective of getting optimum structural performance of the same. The tools used to 
accomplish such objective are the method of the Constrained Finite Strip Method and the Direct Strength 
Method. An optimization methodology based in genetic algorithms is incorporated in this form of 
analysis. Examples considering this methodology show the improvement that could be obtained. Some 
conclusions about the potentiality of the used methodology are also presented. 

1 INTRODUCTION  

Cold-formed steel (CFS) members have a cross section composed of elements with very thin walls, 
i.e., the width/thickness ratio of the element is high. This feature makes these profiles be prone to the 
phenomenon of structural instability, such as local, distortional and global buckling, as well as the 
interaction between them. 

Because of this, the determination of the resistance load of this type of profile is directly related to its 
stability analysis. Therefore, it is essential identify the critical buckling modes and determine their 
respective critical loads. 

Project methods, such as Direct Strength Method (DSM) [1, 2], become highly efficient when the 
elastic stability analysis is made by any numerical method like: Finite Element Method (FEM), Finite 
Strip Method (FSM) or Generalized Beam Theory (GBT), they give a better understanding of the 
structural behavior of the CFS members. 

The formulation of the DSM with experimental and theoretical researches in constant evolution arises 
as a promising method making part, inclusively, since 2004, of AISI [4], as an alternative method to the 
Effective Width Method, from which it derives.  

An important characteristic of this method is to allow and stimulate the optimization of the cross-
section, because it is applied to any cross-section geometries.  

It is common to use FSM [5] as an alternative for the analysis made by FEM. 
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To help the user identify the pure buckling modes (i.e. modes that don’t have any kind of interaction 
among them), some software try to solve this problem determining automatically the critical buckling 
stress in relation to the half-wavelengths buckling, as it is the case in CUFSM [6]. Despite this we often 
find cross-sections where this identification in not obvious [7]. 

In this context, and with the objective to improve the analysis made by the conventional FSM, Ádány 
and Schafer [7-9], incorporated to the FSM method a modal decomposition, which allows the elastic 
stability solutions be directed to only one pure buckling mode, and the modal identification, which allows 
the elastic stability solution obtained by the conventional FSM be classified as one of the fundamental 
buckling modes, being then called Constrained Finite Strip Method (cFSM). 

Defining the cross-section shape of a cold-formed steel member is interesting from a structural 
viewpoint, and due to the different geometric possibilities in this choice, the problem becomes 
challenging in terms of optimization, a subject that has attracted the attention of researchers in this field 
[10-14]. 

The high nonlinear level of the mechanical behavior of the CFS, common optimization schemes 
based on gradient (gradient methods), using the deterministic design specifications for the nonlinear 
objective function, are highly inefficient and limited in its ability to search the solution space the cross-
section shape, since this type of problem is characterized by having around the optimal solution (global 
minimum) several local optimal solutions (local minimum) [13]. 

It is necessary to use some stochastic optimization method to get around this problem, among others 
are include the genetic algorithms (GAs). The GAs use a set of actions that search for global optimum 
solution combining deterministic and probabilistic rules with any varying proportion without to require 
any other additional information about the behavior of problem (such as derives). 

Since the GAs are heuristic techniques, a way to improve its performance is the inclusion of other 
optimization methods that are more efficient in the search for local minimum solution, a technique known 
as hybridization [15]. This alternative has the capability of global exploration of the feasible region allied 
with efficiency in local searches. 

In this context, the present paper aims to propose a methodology to optimize the section of the CFS 
cross section subjected to compression using GAs. 

The tool used in combination with GAs was the cFSM to perform the analysis of elastic stability. The 
great advantage of cFSM is that eliminates the problems of modal identification found in conventional 
FSM. 

2 THEORETICAL FUNDAMENTATION 

2.1 Design of cold-formed steel columns using the DSM 

The value of axial strength of column is performed using the Direct Strength Method (DSM), which 
is part of Appendix 1 of the North American Specification for Design of Cold-Formed Steel Structural 
Members [4]. 

2.1.1 Determination of axial strength for columns 

The axial strength is: φc Pn where, φc is the resistance factor and Pn is the nominal axial strength, being 
the minimum among Pne, Pnl and Pnd   values calculated as follows. 

Flexural, torsional, or torsional-flexural buckling: The nominal axial strength, Pne, for flexural, 
torsional or torsional-flexural buckling is determined using the following formulation: 

 ( )2
c

ne yP 0,658 Pλ=   for  λc ≤ 1,5 and ne y2
c

0,877
P P=

λ
  for  λc > 1,5 (1) 
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where c y creP Pλ = , Py = Ag Fy, Pcre = Ag Fe , in this expressions Fe is a critical elastic overall 
buckling stress the minimum among  the Flexural, Torsional, or Torsional-Flexural Buckling, determined 
using analytical solutions given  in sections C4.1.1 to C4.1.4 of the AISI [4]. 

Local buckling: The nominal axial strength, Pnl, for local buckling is 

 Pnl = Pne   for   λl ≤ 0,776  or  0,4 0,41 0,15 ( ) ( )crl crl
nl ne

ne ne

P P
P P

P P
= −    for   λl > 0,776 (2) 

where l ne crlP Pλ = , Pcrl is a  local buckling load  in a column and Pne is the nominal axial strength 
determined in accordance with equations (1). 

Distortional buckling: The nominal axial strength, Pnd, for distortional buckling in a column is 

 Pnd = Py   for   λd ≤ 0,561  or  0,6 0,61 0,25( ) ( )crd crd
nd y

y y

P P
P P

P P
= −    for   λd > 0,561 (3) 

where d y crdP Pλ = , Pcrd is a distortional  buckling load critical elastic distortional in a column and 
Py as defined previously. 

2.1.2 Determination of critical elastic local and distortional column buckling load 

Although the DSM comes in order to provide to designers a simple and reliable method to determine 
the ultimate strength of CFS, its which is based mainly on results provided by analysis of elastic stability, 
there are still many situations where the existing methodology presents some limitations. 

One of such limitations is the situation where the elastic stability analysis carried out by conventional 
FSM is used to accomplish the classification of buckling modes: global (G), distortional (D) or local (L). 

One way to do this classification is to analyze the minima values of the graph generated by mean of 
the FSM. However, although convenient, this approach is not general and depends on the cross section 
and loading specifications. Sometimes the minimum might be not to exist, or more than one minimum 
exists [16]. Qualitative definitions of modes are also presented in the "Commentary to the Direct Strength 
Method" [17], but up today such classifications are not general. 

2.2 Using the modal analysis of the constrained Finite Strip Method (cFSM) 

The DSM requires that the buckling modes are properly identified so that their equations can be used 
in an appropriate manner. 

The development of cFSM [7-9] provided a way to separate the buckling modes (modal 
decomposition) and to perform its classification (modal identification). These characteristics make the 
DSM win in consistency, since that eliminates uncertainty in identifying the modes of buckling. In other 
hand, lets to incorporate the DSM and the cFSM in the optimization scheme of cold-formed steel profiles. 

The constrained finite strip method (cFSM) is implemented in the computer program CUFSM - 
"Finite Strip Method - Cornell University, version 3.12, developed by Schafer [6], for analysis of elastic 
buckling. This program is freeware and can be freely copied to site address: 
www.ce.jhu.edu/bschafer/cufsm/. 

This software is open source and was development in the Matlab language (Matlab7.6 [18]). These 
characteristics let us adequate the CUFSM to carried out the structural elements optimization considering 
the CUFSM algorithm to determine in automatic way the critical loads and the MRD to determine the 
collapse load. 

How have the critical elastic loads chosen? 

The current design specifications of CFS are calibrated to use solutions of elastic stability (critical 
elastic loads or stress) provided by conventional FSM or FEM, solutions which include the interaction 
between all modes of buckling. 
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For this reason up to have the MRD strength curves calibrated with the solution of pure modes of 
buckling obtained by cFSM Schafer [16] recommends that: 

- the critical half wave length will be determined using MFFr. 
- the critical values of force or moment  that corresponds with the critical half-wavelength previously 
computed with cFSM will be determined with the conventional MFF. 
Following this recommendation, is presented below the steps used for calculating the elastic critical 

forces: 
(i) we determined via cFSM, the half-wavelengths for the minimum of pure buckling modes (Global, 

Local, Distortion and Other Modes); 
(ii) with the values of half-wavelengths obtained previously, we withdrew from the graphic factor of 

load × half-wavelength (generated by conventional FSM, where the modes element interacting) the 
factors of load corresponding and consequently the critical stress and; 

(iii) finally, we  performed the modal classification following the criteria of cFSM. For more details 
of this methodology see Grigoletti [19]. 

3 FORMULATION OF OPTIMIZATION PROBLEM 

Taking into account the previous considerations, the aim of this work  is to optimize the cross-section 
of channel profiles (with or without lips) that resist the axial compression load, F, with the lowest 
consumption of material (less weight of steel or, equivalently, the smallest gross section, Ag), for fixed 
parameters. 

Thus, for the channel sections without lips, hereafter denominated C-section, the design variables are 
the dimensions are bw, bf and t (as indicate in figure 1 (a)) and for channel sections with lips, hereafter 
simply denominated Clip-section, the design variables are the dimensions designated by bw, bf, D and t (as 
in figure 1 (b)). Now we can represent the problem of minimizing the cross-section as: 

 Minimize:   f(x1, x2,..., xn) = Ag (4) 

where:  
x1 = bw,  x2 = bf,  x3 = t for C-section and  x1 = bw,  x2 = bf,  x3 = D,  x4 = t for Clip-section. 
Subject to the following behavioral inequality constraints: 
- F ≤ φc Pn,  bw / t ≤ 472,  bf / t ≤ 159,  4 ≤ D / t ≤ 33,  0,7 ≤ bw / bf ≤ 5,  0,05 ≤ D / bf ≤ 0,41,  ≤ 200 

and the following side constraints:  
30 mm ≤ bw ≤ 1000 mm,  30 mm ≤ bf ≤ 1000 mm,  30 mm ≤ D ≤ 1000 mm  and  0,614 mm ≤ t ≤ 6,3 

mm. 
Some explanations of the constraints used are presented below. 

 
 
 
 
 
 
 
 
 
 
 
 

(a) 

 
 
 
 
 
 
 
 
 
 
 

(b) 

Figure 1: Cross-section of columns to be optimized: a) C-section without lips; b) C-section with lips 
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The behavioral inequality constraints were here with the goal that the optimized geometry does not 
fall bound outside of the “pre-qualified” columns of table 1.1.1-1 of Appendix 1 of the North American 
Specification for Design of Cold-Formed Steel Structural Members [4]. 

In figure 1 ri is the inner radius of folding. 
The side constraints were used for that the dimensions bw, bf, D and t with the goal that to use 

commercial acceptable limits and in this way reduce the search space used by the genetic algorithm. 
The computational process of optimization of C-sections and Clip-sections employed in the present 

study used source codes implemented in Matlab 7.6 [18] and  the toolbox "Genetic Algorithm and Direct 
Search Toolbox" [20], which uses the method of Genetic Algorithms. 

This toolbox, as well as, the CUFSM are open source codes and allow the implementation of new 
functions. 

4 VALIDATION OF THE PROPOSED METHODOLOGY 

We consider as reference the results of eight profiles tested by Chodraui [21], to validate the propose 
implementation.  

 

 
Figure 2: Reference system and boundary conditions of the columns optimized 

 
In the optimization of each profile we fixated the load capacity obtained experimentally (Nexp). The 

boundary conditions, length, type C-section (either with or without lips) and mechanical properties 
adopted are shown in figure 2. We consider as variables in the optimization process bf, bw and t for both 
types of section and also D to the Clip-section. The cross-sectional area of the profile is a variable 
dependent on the dimensions presented here, i.e., Ag = f(bf , bw, t, D). 

In Grigoletti [19] was performed the numerical modeling of the tests performed by Chodraui [21] 
using finite elements considering its mechanical and geometric non-linearities as well as geometric 
imperfections. 

The comparison between the experimental and theoretical results obtained by FEM is shown in 
column 10 of table 1. This table also presents the results of the optimization in terms of the ratio between 
the area of optimized profile and the area of reference profile (Aopt/Aref). 

Thus, in the column 5 of table 1 values smaller than unity indicate that the section obtained shows 
better performance than the reference section. In column 6 of table 1 the percentage reduction of the area 
obtained in the optimization is also presented optimization. 

Ky = 1,0 

F = Nexp 
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Material Properties 

Modulus of elasticity 
E = 205 GPa 

Yield strength 
fy = 375 MPa 

Ultimate tensile strength 
fu = 513 MPa 

Poisson’s ratio 
 = 0,3 
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Table 1: Comparison of results for profiles under pure axial compression 

Reference sections Optimum profiles 

Cross-
sections 

L 
(mm) 

ref
MEF*N  

(kN) 

ref
expN  

(kN) 

Aopt 
(mm2) 

opt

ref

A

A
 Red. 

(%) 
NNAS 
(kN) 

opt
MEFN  

(kN) 

ref
exp

opt
MEF

N

N
 

ref
MEF*
opt
MEF

N

N
 

1,015 141 168 507 0.82 17.79 168 140 1.20 1.01 
1,575 129 132 446 0.72 27.69 117 111 1.19 1.16 
2,130 92 75 318 0.52 48.46 60 70 1.07 1.31 

Clip-
sections 

 
2,700 60 63 316 0.51 48.78 47 53 1.19 1.13 
850 101 119 392 0.86 14.30 100 98 1.21 1.03 

1,320 106 89 362 0.79 20.76 70 78 1.14 1.36 
1,800 66 55 298 0.65 34.78 40 37 1.49 1.78 

C-sections 

2,270 42 44 296 0.65 35.24 30 24 1.83 1.75 
ref
MEF*N  - load capacity obtained by ANSYS to reference sections 
ref
expN  - load capacity obtained experimentally [21] to reference sections 

NNAS - load capacity obtained according with American standard [22] to the optimum profiles 
opt
MEFN  - load capacity obtained by ANSYS to optimized sections 

Clip 125 × 50 × 25 × 2,38  Aref = 617 mm2 and C 100 × 50 × 2,38  Aref = 457 mm2 
 

5 DISCUSSION OF RESULTS5 

Of the results presented in Table 1, we can make the following observations: 
- Since the boundary conditions of the reference profile respect to x-axis are fixed and with respect to 

the y-axis is hinged, the slenderness ratio in relation to the y-axis ( λy) is greater than ( λx), for this reason  
was consistent that the optimization searched a section with minor λy, and this tendency was  confirmed. 
-Table 1 also shows that when we determine the load capacity (strength) of the profiles Clip-section, 
optimized by FEM, the relationship ref opt

exp MEF/N N is between 1.07 and 1.20 (column 9 of table 1, which are 
acceptable, since this dispersion also happened in calibration of the finite element model (see Grigoletti 
[19]).  
But when we determine the load capacity (strength) of the profiles C-section, optimized by FEM, we 
verified that the relationship ref opt

exp MEF/N N   is between 1.21 and 1.83 (column 9 column of table 1). 
In this case the values are acceptable only for the lengths of 850 and 1320 mm, not worth it for the 

profiles C-sections of lengths 1800 and 2270. 
The explanation for this sensible difference (49 and 83%), for profiles with lengths of 1800 and 2270 

mm, can be explained for: (i) the curves of DSM are not calibrated for the pure modes (buckling modes 
that have neither kind of interaction); (ii) the C-sections are not yet, pre-qualified sections by DSM (this 
would to require a coefficient of resistance more conservative. In the present work the comparisons  were 
made with a nominal resistances) and; (iii) depending on the relationships between the dimensions of the 
section, the C-section can have the critical elastic buckling mode ranked by cFSM how distortional mode, 
i.e., in disagreement with the classification given by standards design, where the C-sections without lips 
admit only local buckling. This it implies that instead of using the resistance curve of the local buckling 
the curve of distortional buckling is used, that in this case overestimates the load capacity (strength) of 
the optimized profiles by DSM. 
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- The table 1 also is presented the strength  nominal values obtained by mean of the American 
standard [22], that confirm the values obtained through MEF ( opt

MEFN ), and in this case also  appear the 
same phenomenon observed when comparing the experimental reference value with ( opt

MEFN ). 
- It is important point out that in the case of a perfectly correlation between the results the ratio 

ref opt
exp MEF/ = 1N N  will be expected, but values differences between 14 to 21% are waited as discussed in [19] 

and [21].  
- In the comparison between the optimized profiles and the references profiles, we can to observe a 

great area reduction, (14% a 48%), as is appreciated in column 6 of the table 1, without considering the 
length 1800 and 2270 of the profiles C-section. 

As a final commentary, it is important to say that the problems founded in the profiles C-section 
analysis could be avoided simply  admitting that the classified buckling mode as distortional for cFSM, 
will be considered as local and then to use  the strength curve corresponding to this mode, but this way is 
against the cFSM philosophy. 

6 CONCLUSION 

In this paper we proposed a methodology to optimize cold-formed steel members, via GAs, using the 
direct strength method (DSM) working with the constrained finite strip method (cFSM). From the 
obtained results, in different steps of this paper, we conclude that: 

- Regarding the methodology used for the elastic stability solution: (i) the utilization of cFSM has 
demonstrated to be a useful tool to help the DSM, because it solves modal identification problems that 
are present when we use the conventional FSM or FEM; (ii) although the cFSM doesn’t give necessarily 
the same results obtained via conventional FSM (which considers all modes interacting), it can be used 
together with the DSM, once the methodology explained by Grigoletti [19] is used to determine the 
critical loads; (iii) a difficulty of philosophical character in the utilization of cFSM is the fact that the 
mechanical definitions used to classify the buckling modes are not always in accordance with the classical 
concepts used for these modes, causing sometimes some confusion; 

- Regarding the methodology used for the column load capacity (strength) determination: (i) the 
DSM has demonstrated to be an adequate tool to optimize profiles, as it incorporates naturally every form 
of collapse that the CFS are submitted to; (ii) although we only optimized C-section and Clip-section 
profiles, the implemented methodology is general, so that it can also be used for other kinds of profiles; 

- Regarding the methodology used to optimize the cross-section form: (i) during the simulation, the 
utilization of the hybrid function demonstrated to be an excellent tool to refine the search for optimum 
solution. This affirmation was proved through several optimization runs, coming from different points 
and looking for the best result. In practically all the runs the hybrid function, using the solution given by 
the GAs converged to the same value of the global minimum; (ii) a difficulty found was the processing 
time spent in the optimization as the cFSM passes the several half-wavelengths (50 at least to have an  
accurate result), executing to each half-wavelength an eigenvectors stability analysis.  
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