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Abstract. This work presents a state-of-the-art report of the most recent developments concerning formulations, 
numerical implementations and applications of Generalised Beam Theory (GBT) to analyse the structural response 
of thin-walled steel members and frames. After a brief overview of the cross-section analysis, one addresses new 
findings dealing with the use of GBT to assess the (i) first-order behaviour of steel-concrete composite bridge decks, 
(ii) buckling and post-buckling behaviour of members and frames with arbitrary loading and support conditions, 
(iii) vibration behaviour of load-free and loaded open-section members and (iv) dynamic behaviour of members 
subjected to periodic and moving loads. In order to illustrate the unique features and show the potential of the GBT 
approach, several numerical results are presented and discussed. For validation purposes, most of these results are 
compared with values yielded by shell finite element analyses, performed in the codes ADINA, ABAQUS and ANSYS. 

1 INTRODUCTION 

Generalised Beam Theory (GBT) may be viewed as an extension of Vlasov’s classical thin-walled bar theory 
that includes cross-section deformations (wall bending and distortion), thus combining the advantages of a one-
dimensional formulation with the capability of folded-plate theory. It has been amply shown that GBT constitutes a 
rather powerful, elegant and clarifying method of structural analysis for prismatic thin-walled member and structures. 
Indeed the GBT approach offers possibilities not available when other numerical techniques, such as finite strip or 
(mostly) shell finite element analyses, are employed. This is due to the GBT unique features, which make it possible 
to decompose a member/frame deformed configuration or buckling/vibration mode into a linear combination of 
structurally meaningful “modal contributions”. Such modal decomposition requires the identification of cross-section 
deformation modes, which is achieved through the performance of a special discretisation-and-orthogonalisation 
procedure designated as cross-section analysis − the “trademark” of GBT. 

The pioneering work that led to the development of the GBT approach to perform structural analysis must be 
credited to Schardt [1], who subsequently was also responsible, together with his collaborators at the University of 
Darmsdadt, for the growth of GBT during about four decades. Another important contribution was due to Davies 
and co-workers [2-3], who (i) extensively employed GBT to investigate the local and global buckling behaviour of 
cold-formed steel profiles, and (ii) contributed decisively to disseminate it amongst the English-speaking technical-
scientific community (the vast majority of the work carried out by Schardt et al. was only published in German). By 
the end of the last millennium, GBT was primarily used to perform elastic first-order and buckling analyses of thin-
walled steel members with unbranched open cross-sections, namely cold-formed steel profiles (even if other 
structural analyses and cross-section shapes could already be handled by GBT [4]). 
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In the last decade, a research team at IST (Technical University of Lisbon) has devoted a very significant amount 
of research work to the development, numerical implementation, application and worldwide dissemination of novel 
GBT formulations that considerably broaden the scope of this theory, by enabling the performance of several 
additional analyses and covering a wider range of structural systems [5-7]. In particular, it is now possible to carry out 
(i) first-order, buckling, post-buckling, vibration and dynamic analyses of metal and FRP members with open 
and closed cross-sections, and (ii) first-order, buckling and post-buckling analyses of thin-walled steel frames. 

The aim of this work is to report and provide a unified view on the most recent advances concerning the 
use of GBT analyses to assess the structural response of thin-walled steel members and frames. Besides presenting a 
brief (but insightful) overview of the fundamental concepts and main procedures involved in the performance of a 
GBT cross-section analysis, it (i) provides an account, illustrates the application and show the capabilities of several 
formulations that were developed and numerical implemented (beam finite elements) in the last couple of years, and 
also (ii) addresses the research work dealing with GBT that is currently under way. Due to space limitations and the 
large amount of material available, it is only possible to include a brief description of the new developments, 
followed by the presentation and discussion of illustrative numerical results − however, all the key references are 
provided, where the interested reader may find detailed accounts of all the work reported here. In particular, this 
paper is concerned with GBT formulations that can be applied to analyse the (i) first-order behaviour of steel-
concrete composite bridge decks, (ii) buckling and post-buckling behaviour of members and frames exhibiting 
arbitrary loading and support conditions, (iii) vibration behaviour of load-free and loaded open-section members 
and (iv) dynamic behaviour of members subjected to periodic and moving loads. For the sake of validation and 
numerical efficiency assessment, most of the GBT-based results presented are compared with values yielded by 
shell finite element analyses carried out in commercial codes, namely ADINA [8], ABAQUS [9] and ANSYS [10]. 

2 CROSS-SECTION ANALYSIS 

In order to obtain a displacement field representation compatible with the classical beam theory, GBT adopts 
the variable separation 
 
 )()(),( , xsusxu xkk φ=  )()(),( xsvsxv kk φ=  )()(),( xswsxw kk φ=  ,   (1) 
 
where (i) x and s denote coordinates along the member length and cross-section mid-line, (ii) uk(s), vk(s) and wk(s) are 
functions providing the longitudinal, transverse membrane and transverse flexural displacements characterising 
deformation mode k, (iii) (.),x≡ d(.)/dx, (iv) the summation convention applies to subscript k and (v) φk(x) are mode 
amplitude functions defined along the member (or finite element) length. 

Before carrying out a GBT structural analysis (e.g., a first-order, post-buckling or vibration analysis) of a given 
thin-walled system (member or frame), one must begin by performing cross-section analyses, which provide the 
corresponding member “deformation modes” (i.e., the functions uk(s), vk(s) and wk(s) appearing in eq. (1), which are 
the “essence” and “trademark” of GBT) and associated modal mechanical properties. This is achieved by means 
of specific discretisation-and-orthogonalisation procedures that vary with the cross-section type and were sequentially 
developed and reported in detail by (i) Silvestre and Camotim [11], Dinis et al. [12], Gonçalves et al. [13] and 
Silvestre [14, 15], in the context of buckling analysis, and by (ii) Silvestre and Camotim [16], for post-buckling 
analysis − it still worth noting the very recent work by Gonçalves et al. [17], which provides a very insightful and 
complete account on the determination of deformation modes in polygonal cross-sections. 

In polygonal cross-sections (i.e., excluding the circular and elliptical tubes investigated by Silvestre [14, 15]), it is 
possible to identify two main groups of deformation modes, involving (i) conventional (those originally considered 
by Schardt [1]) and (ii) non-conventional modes – the latter comprise membrane shear, warping shear and 
transverse extension modes. The main features of these various deformation mode sets are the following: 
(i) The conventional modes, which are based on the null membrane shear strain and transverse extension 

assumptions, constitute the core of GBT and can still be subdivided into (i1) global (cross-section in-plane 
rigid-body motions: axial extension, major/minor axis bending and torsion), (i2) distortional and (i3) local 
modes − the last two categories involve cross-section in-plane deformation (distortion and/or wall bending). 

(ii) The membrane shear modes account for the membrane shear deformation occurring in walls belonging to 
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 closed cells. They are obtained through the sequential imposition of unit membrane shear strains at each closed-
cell wall (γ M=v,x+u,s=1), while keeping null values at all the remaining (closed-section and open-branch) walls. 

(iii) The warping shear modes make it possible to capture the non-linear variation of the warping displacements 
along the cross-section wall mid-lines. They are obtained by imposing unit warping displacements u(s) and null 
membrane transverse displacements v(s) at each (natural and intermediate) node − this procedure automatically 
implies null flexural displacements w(s), i.e., one has only u(s)≠0. 

(iv) The transverse extension modes involve only in-plane displacements (i.e., u(s)=0) and account for the cross-
section deformation due to the wall membrane transverse extensions. They are obtained through the imposition 
of unit membrane transverse displacements v(s) and null warping displacements u(s) at each node − flexural 
transverse displacements w(s), uniform along each wall mid-line, may be required to ensure transverse 
displacement compatibility at the natural nodes. 

Non-conventional deformation modes were already included in recent GBT-based investigations. For instance, 
(i) Gonçalves and Camotim [18] considered warping shear modes to analyse the shear lag effects in twin-box girder 
bridges, (ii) Silvestre and Camotim [19] used warping shear and transverse extension modes to study the post-
buckling behaviour of cold-formed steel lipped channel members, and (iii) Dinis et al. [20] utilised membrane shear 
modes to assess the buckling behaviour of cold-formed steel hollow-flange channel beams. 

Figure 1 shows the geometries (shapes and dimensions) and possible GBT discretisations of most of the thin-
walled member cross-sections dealt with in this work. Figures 2 to 5 depict the main features of the corresponding 
deformation modes that are more relevant for the analyses carried out in the paper (i.e., those with significant 
contributions to the member buckling/vibration mode shapes or first-order/post-buckling deformed configurations). 
 

t

b dd

h h

b

t

d

th

b b

h t

Natural node Intermediate node End node

Hat-section Lipped channel I-section RHS  
 

Designation Shape 
Young’s modulus 

(GPa) 
Web 

h (mm) 
Flange 
b (mm) 

Lip 
d (mm) 

Thickness 
t (mm) 

HS120×60×2.0 Hat-section 210 120 60 20 2.0 

C100×40×1.0 210 100 40 20 1.0 

C100×60×1.0 205 100 60 5 1.0 

C100×100×2.0 200 100 100 20 2.0 

C202×75×2.3 

Lipped 
Channel 

205 202 75 20 2.3 

I300×150×5.0 I-section 205 300 150 - 5.0 

RHS200×75×3.0 RHS 205 200 75 - 3.0 
 
Note: All the steel members dealt with in this work have mass density ρ=7.85g/cm3 and Poisson’s ratio ν=0.3. 

Figure 1: Hat-section, lipped channel, I-section and RHS dimensions and possible GBT discretisations. 
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Figure 2: Main features of the most relevant hat-section deformation modes. 
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Figure 3: Main features of the most relevant lipped channel deformation modes. 
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3 FIRST-ORDER ANALYSIS 

In the context of member first-order (geometrically linear) analysis, the GBT system of equilibrium equations 
(one per deformation mode), expressed in terms of the modal amplitude functions φk(x), is given by 
 
 hkikxxkikxxxxkik qBDC =+− φφφ ,,  ,   (2) 
 
where (i) qh are the modal applied loads and (ii) Cik, Dik and Bik are cross-section modal mechanical properties, 
defined in [11, 18] – while Cik and Dik concern the warping displacements and torsional rotations, Bik stem from 
local deformations (wall bending and distortion). 

Gonçalves and Camotim [18] have recently employed a novel GBT-based approach to analyse the first-order 
behaviour of steel-concrete composite beams and bridges (i) acted by eccentric vertical loads, causing bending 
and torsion, and (ii) having cross-sections that combine closed cells with open branches and exhibit displacement 
constraints to model box diaphragms. In order to illustrate this approach, let us consider the first-order behaviour 
of the simply supported (pinned end sections that may warp freely) steel-concrete composite twin-box girder 
bridge with (i) the cross-section geometry and dimensions given in figure 6(a), (ii) a 20m span and (iii) the material 
properties E=37GPa, =0.1 (C50/60 concrete deck) and E=210GPa, =0.3 (steel girders). The loading consists 
of a mid-span vertical force applied at point A (see fig. 6(a)), causing combined bending and torsion in the 
bridge – due to symmetry, only half of the bridge is analysed. 

Concerning the cross-section analysis, the main challenge is to identify deformation modes that can easily 
accommodate the presence of box diaphragms at the bridge piers and/or along its span. This challenge is met by 
means of the auxiliary system depicted in figure 6(b), in which (i) the diaphragm constraint is modelled by a single 
cross-link (all walls are assumed inextensible) and (ii) rigid links fill the gap between the mid-lines of the concrete 
slab and steel girder top flanges. Then, the cross-section analysis leads to the following 13 deformation modes: 
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Figure 6: Bridge cross-section (a) geometry and (b) GBT discretisation. 
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4 BUCKLING ANALYSIS 

The GBT system of equilibrium equations governing the member or frame buckling behaviour is given by 
 

 ( ) ( )[ ] 0XWWXWXBDC xkjik
0

xjxk
0

xjjkixxk
0
jjikkikxxkikxxxxkik =+−−+− ,,,,,,,, φφφλφφφ ττσ  ,   (3) 

 
where (i) λ is the load parameter and (ii) σ

jikX and τ
jikX  are geometric stiffness components associated with the pre-

buckling normal stress resultants 0
jW and shear stresses due to the longitudinal stress gradients, all defined in [21]. 

Concerning the buckling analysis of isolated members, Bebiano et al. [21] developed a GBT-based beam 
finite element formulation capable of analysing single-span beams with standard support conditions (i.e., free, pinned 
or fixed end sections) acted by transverse loadings associated with major and/or minor axis bending. This 
formulation incorporates the geometric stiffness reduction due to non-uniform compression and/or major/minor 
axis bending, causing longitudinal normal stress gradients and shear stresses (varying bending moments). Soon after, 
Camotim et al. [22] extended the above GBT-based beam finite element, making it possible to assess the local, 
distortional and global buckling behaviour of thin-walled members with a wide variety of loading and support 
conditions, including intermediate and/or localised supports (simulating bracing systems or connectors). In order to 
incorporate these non-standard support conditions into the analysis, the system (3) must be solved subjected to constraint 
conditions that (i) vary from case to case and (ii) are expressed as linear combinations of the appropriate set of modal 
degrees of freedom (d.o.f.). A little later, Silva et al. [23] further improved the GBT buckling analysis capabilities, by 
incorporating into the beam finite element formulation geometric stiffness associated with transverse normal stresses, 
a feature enabling the capture of effects related to (i) patch loading (concentrated loads) and/or (ii) the application of 
transverse loads away from the cross-section shear centre (e.g., loads applied at channel or I-beam top flanges). 

As far as thin-walled frames are concerned, the major difficulties in applying GBT (or any other beam 
model) lie in the appropriate treatment of the joints, which involves the simultaneous consideration of (i) the 
warping transmission due to torsion and/or distortion and (ii) the compatibility between the transverse (membrane 
and flexural) displacements of the connected member end sections − moreover, it also convenient to be able to 
simulate the connections/restraints stemming from the presence of bracing systems. To overcome these difficulties, a 
GBT-based beam finite element approach was developed and numerically implemented. This approach makes it 
possible to assess the buckling behaviour of thin-walled plane and space frames (i) built from RHS or open cross-
section members, (ii) having localised supports stemming bracing systems, (iii) exhibiting various joint configurations 
and (iv) acted by loadings causing non-uniform internal force and moment diagrams. This work is mostly due to 
Basaglia [24] and a fairly complete state-of-the-art report was recently published by Camotim et al. [7]. 

4.1 Illustrative examples 

In this sub-section, numerical results concerning the buckling behaviour of (i) hat-section cantilevers [23], 
(ii) a cold-formed RHS portal frame [25] and (iii) a restrained space frame [26] are presented and discussed. For 
validation purposes, most GBT-based critical buckling loadings and mode shapes are compared with values yielded 
by shell finite element analyses carried out in ABAQUS [9] or ANSYS [10] – the cantilevers and frames are discretised 
into refined S9R5 (ABAQUS) and SHELL181 (ANSYS) element meshes, respectively. 

4.1.1 Hat-section cantilevers 

One analyses the buckling behaviour of HS120×60×2.0 cantilevers acted by two identical transverse point loads 
applied at either the end-section web-flange or web-lip corners − Q is the total applied load. The main objective is to 
assess the influence of the load position on the cantilever critical buckling moment (Mcr=Qcr.L) and mode shape. 
Figures 14(a)-(b) and 15 show, for the two loadings considered, (i) Mcr(L) buckling curves, (ii) the corresponding 
GBT modal participations diagrams and (iii) the GBT-based critical buckling mode shapes concerning cantilevers 
with three lengths. The observation of these buckling results prompts the following remarks: 
(i) There is an excellent agreement between all the GBT and ABAQUS critical moments − differences below 4%. 
(ii) There is a clear difference between the cantilever critical buckling moments and mode shapes associated with 

the top and bottom loadings. Concerning the Mcr values, those corresponding to bottom loading may exceed by 
more than 300% their top loading counterparts (see fig. 14(a)). In both cases, the critical buckling modes include 
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Figure 14: Hat-section cantilevers: (a) Mcr(L) buckling curves and (b) GBT modal participation diagrams 
concerting the two position of the tip point loads. 

 

               
 L=50cm L=100cm L=200cm L=50cm L=100cm L=200cm 

Figure 15: Hat-section cantilevers: GBT-based critical buckling mode shapes for three lengths and the 
two loadings under consideration. 

 
 relevant contributions from global, distortional and local deformation modes, as shown in figures 14(b) and 15 – 

they combine (ii1) symmetric distortional (5) and local (7, 9, 11, 13, 15) modes, for L<55 cm, or (ii2) anti-
symmetric global (3, 4), distortional (6) and local (8, 10) modes, for L>55 cm. 

(iii) Figure 15 shows the critical buckling modes of three cantilevers (L=50 cm, L=100 cm and L=200 cm) under 
top and bottom loading. In order to illustrate the statements made in the previous item, consider the L=100 cm, 
for which one has (iii1) Mcr=10.67 kN.m and 14.84 kN.m (39% increase), and (iii2) the “replacement” of 
contribution of torsion (mode 4 − 80.2-43.9% decrease) by those of distortion and minor axis bending 
(modes 6 and 3 − 15.9-40.5% and 2.4-11.2% increases) − see figures 14(a)-(b). 

4.1.2 RHS plane frame 

Next, one investigates the buckling behaviour of the symmetric portal frame depicted in figure 16, (i) formed by 
three orthogonal RHS200×75×3.0 members (A, B, C − frame in-plane behaviour corresponding to minor axis 
bending), (ii) with fixed column bases and (iii) subjected only to axial compression (equal loads P applied at the 
joints). Figure 17 provides ANSYS and GBT-based 3D representations of the buckled frame joint region – note that 
the GBT view is obtained from a beam finite element analysis. Figure 18 displays, for each frame member, the 
amplitude functions of the two deformation modes that participate in the frame critical buckling mode. The 
comparison between the buckling results yielded by the two numerical models leads to the following comments: 
(i) The two critical loads obtained virtually coincide: Pcr.GBT=370.3kN and Pcr.ANSYS=381.3kN (2.9% difference). 

However, note the disparity between the d.o.f. numbers: 648 (GBT – 80 finite elements) and 22600 (ANSYS). 
(ii) There is also a close agreement between the GBT modal amplitude functions and the ANSYS buckling mode 

shape − they providing different representations of a well defined local buckling mode. However, it can easily be 
argued that the GBT result enables a better quantitative and qualitative grasp of the frame buckling mechanics. 
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(iii) The frame critical buckling mode is anti-symmetric and involves the three members: it exhibits 12 half-waves in 
each column and 6 half-waves in the beam. Only the local deformation modes 6 and 7 have visible contributions 
to the frame critical buckling mode, with a clear dominance of mode 6 (note that the mode 7 contribution is 
amplified ten times). The more relevant (local) deformations occur in the column central regions and, as 
expected, the beam deformations are noticeably smaller. 
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Figure 18: RHS portal frame − member modal amplitude functions φk(X ). 

4.1.3 I-section space frame 

Finally, the buckling analysis of the symmetric space frame depicted in figure 19(a) is presented and discussed. 
This frame (i) comprises two portal frames (F1 and F2) joined by a transverse beam (TB), all built from 
I300×150×5.0 members, and (ii) is acted by five equal vertical loads (P) applied at the four column tops and at 
the centroid of the transverse beam mid-span cross-section. All column-to-beam joints are box-stiffened (web 
continuity) and the beam-to-beam ones exhibit flange continuity. Moreover, (i) the column bases are fixed, (ii) the 
transverse displacement along X  is prevented at all column-to-beam joints (see fig. 19(b)) and at the TB mid-span 
cross-section, and (iii) the displacement along Z  is prevented at all column-to-beam joints (“rigid” diagonal and 
transversal tie-rods, connected to I-section mid-web point − see also fig. 19(b)). 

Figures 20(a) and 20(b) show (i) the GBT modal amplitude functions for column A and beams B and TB, and (ii) 
a 3D view of the frame critical buckling mode shape, yielded by the ANSYS shell finite element analysis (tie-rod 
modelled with a 6cm and BEAM189 elements). As before, the GBT analysis requires only a small fraction of the d.o.f. 
involved in its ANSYS counterpart: 1030 (80 beam elements − 8 per column and 16 per beam) versus 25000. 
The following conclusions can be drawn from the comparison between these two sets of frame buckling results: 

(i) The GBT and ANSYS critical loads are again extremely close: Pcr.GBT=161.83kN and Pcr. ANSYS =159.11kN (1.71% 
difference). Moreover, there is an excellent correlation between the ANSYS buckling mode shape and the GBT 
modal amplitude functions. This assessment can by further (and amply) confirmed by looking at figure 20(c), 
providing ANSYS and GBT 3D views of the buckled TB mid-span region. 
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Figure 19: Space frame (a) geometry and loading, and (b) support conditions and transverse beam bracing detail. 
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44

Dinar Camotim et al. 

(ii) The frame critical buckling mode is triggered by the TB and combines participations from global (3, 4) and local 
(5, 6, 7) deformation modes. While the latter occur mainly in the beam mid-span region (higher bending 
moments), the influence of the former is felt along the whole beam length − due to small wall thickness, the 
occurrence of local buckling hamper the bracing system efficiency in preventing lateral-torsional buckling. 

(iii) The portal frame members experience mostly lateral-torsional buckling (maximum values near the beam 1/4 and 
3/4-span cross-sections) − in the beams, there are also minute contributions from modes 2 and 5. 

5 POST-BUCKLING ANALYSIS 

The determination of a member/frame post-buckling behaviour involves solving the one-dimensional problem 
governed by the system of non-linear differential equilibrium equations 
 

 
hxxjxixkxjxixkkijh2

1

xxxjxkxjxkhjk2

1
xxxxkkkhkkkhxxkkkhxxxxkkkh

qtohC

CCBDC

=+−+

+−+−−−+−−−

...)(

)()()()()(

,,,,,,,

,,,,,,,,

φφφφφφ

φφφφφφφφφφφφ
 ,   (4) 

 
where the bar identifies the modal amplitude functions defining the initial geometrical imperfections. While the 
second-order tensor components (Ckh, Dkh, Bkh) characterise the member linear (first-order) behaviour, the third 
(Ckjh, etc.), fourth (Ckijh, etc.) and higher-order (h.o.t., not shown in (4)) ones are associated with its geometrically 
non-linear behaviour − all these tensor components are given in [16, 27]. 

In isolated members, the solution of the non-linear system (4) can be obtained by means of a GBT-based 
beam finite element formulation developed and implemented by Silvestre and Camotim [16], in the context of 
unbranched open-section members, and recently extended by Basaglia et al. [27] to cover members with arbitrary 
open cross-sections (i.e., including also branched ones) and allow for the consideration of non-standard support 
conditions, such as localised displacement restraints (e.g., those stemming from bracing) or intermediate supports. 

The most recent GBT developments are due to Basaglia et al. [28, 29] and concern a geometrically non-linear 
GBT formulation applicable to assess the local, distortional and global post-buckling behaviour of thin-walled 
frames. It incorporates arbitrary initial geometrical imperfections (expressed in modal form) and is able to handle the 
kinematics of joints connecting two non-aligned members, namely those associated with the compatibility 
between the connected cross-section warping (due to axial extension, bending, torsion, distortion and/or shear) and 
transverse (due to overall flexure, wall bending and transverse extension) displacements and rotations. As 
in the case of isolated members, the numerical solution of the discretised system of non-linear algebraic equilibrium 
equations is obtained by means of an incremental-iterative technique based on Newton-Raphson’s method and 
adopting either a load or a displacement control strategy. 

5.1 Illustrative examples 

This sub-section includes numerical results concerning the post-buckling behaviours of (i) a laterally restrained 
lipped channel beam [30] and (ii) a symmetric portal frame [28], both containing critical-mode initial geometrical 
imperfections. As before, the GBT beam finite element results are compared with values yielded by shell finite 
element analyses − in this case, carried out in ANSYS and adopting discretisations into SHELL181 element meshes. 

5.1.1 Laterally restrained lipped channel beam 

The beam analysed is simply supported, has length L=200cm, exhibits a C202×75×2.3 cross-section, is acted by 
a uniformly distributed load q applied at the shear centre axis and is laterally restrained by means of two pairs of 
rigid supports located at the web-flange corners (see detail in fig. 21) of its 1/3 and 2/3-span cross-sections. 

The first step consists of determining the beam buckling behaviour. Figure 21 provides representations of the 
beam critical buckling mode provided by the ANSYS (3D view) and GBT (modal amplitude functions φk(x)) analyses 
− the corresponding buckling loads are qcr.ANSYS=0.664 kN/cm and qcr.GBT=0.671 kN/cm (1.05% difference). It is also 
worth noting that, due to the lateral restraints, only distortional (5+6) and local (7+8) deformation modes have 
perceptible contributions to the beam buckling mode – as expected, the maximum participations of these modes 
occur in the beam mid-span region. 



45

Dinar Camotim et al. 

 

  

 

  

 

-1.0

0.0

1.0

0 40 80 120 160 200

5 

7 (×5) 

6 

8 (×5) 

L (cm)  
Figure 21: ANSYS and GBT representations of the restrained beam critical buckling mode shape. 

 
The post-buckling analysis performed involves a beam containing critical-mode initial imperfections with 

amplitude v0= –0.02cm, where v is the mid-span flange-lip corner vertical displacement − see fig. 22(a). Figure 22(a) 
shows the equilibrium paths (q vs. v) yielded by the shell (ANSYS) and beam (GBT) finite element analyses. The 
modal participation diagram of figure 22(b) provides information about the evolution of the “relative participations” 
of the various GBT deformation modes to the beam deformed mid-span cross-section along the post-buckling 
equilibrium path. After observing these post-buckling results, one is led to the following conclusions: 
(i) A virtually “exact” beam post-buckling equilibrium path is provided by a GBT analysis that includes only 

deformation modes 1+2+5-8+20+21+36 – for v<5.0cm, the differences between the GBT and ANSYS equilibrium 
paths are always below 3.5%. Moreover, note that the GBT analyses involve only a small fraction of the number 
of degrees of freedom required by the ANSYS ones: 168 against over 12500. 

(ii) Major axis flexure (mode 2) governs the early loading stages and is progressively “replaced” by distortional 
(modes 5+6) and local (7) deformation as the applied load increases. 

(iii) The modal participation diagram shows that the contributions of modes 5 and 6-8 decrease until they reach 
null values, for q=0.107 kN/cm and q=0.278kN/cm, and then gradually increase again. This fact stems 
from the predominance of major axis flexure (mode 2), which “forces” modes 5-8 to invert their amplitude signs 
− i.e., forces the upper flange-lip assembly to move downwards (the initial imperfection made it move upwards). 
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Figure 22: Restrained beam (a) post-buckling equilibrium paths and two mid-span cross-section deformed 
configurations (ANSYS − × 2), and (b) modal participation diagram concerning the mid-span cross-section. 
 

Figure 23 shows the beam deformed configuration and longitudinal normal stress distribution for q=0.5kN/cm, 
both yielded by the GBT analysis. Note that (i) there is an excellent correlation between the ANSYS and GBT-based 
mid-span cross-section deformed configuration (see fig. 22(a)), and (ii) high compressive and tensile stresses occur 
at the beam central third-length, involving the whole width of the top and bottom flanges, respectively. 
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Figure 26: Frame equilibrium paths P vs. Yv (points R1, R2, R3) and ANSYS deformed configuration (P=23kN). 

 
the joint (point R2) – this figure also includes the ANSYS deformed configuration at P=23kN. The frame contains 
critical-mode initial geometrical imperfections with amplitude v0=− 0.15mm (v0 is the beam initial Yv  value − 
inward flange-lip motions). Note that the GBT results presented were obtained with four different deformation mode 
sets. After comparing these beam (GBT) and shell (ANSYS) finite element post-buckling results, one concludes that: 
(i) The “simpler” GBT analysis (only modes 1+3+5) provides Yv  values that are very accurate up to P≅10kN (i.e., 

P/Pcr≅0.7). The accuracy is gradually eroded as P increases, particularly in the beam − e.g., for P=Pcr the GBT 

Yv  values may underestimate the “exact” (ANSYS) ones by as much as 40%. 
(ii) The sole addition of the local modes 7+9 leads to accurate results up to about P=Pcr. At more advanced post-

buckling stages, the GBT model becomes stiffer than the ANSYS one − e.g., for P=23kN (i.e., P/Pcr=1.6) 
GBT provides a Yv  value at point R3 that is 10% above the “exact” one. 

(iii) Further adding the warping shear mode 21 considerably improves the accuracy of the results, as the differences 
between the GBT and ANSYS values become quite small over the whole applied load range − the maximum 
discrepancy concerns point R1 (column A), where the “exact” Yv  values is underestimated by 4.5%. 

(iv) Finally, including the transverse extension mode 36 in the analysis leads to virtually coincident GBT 
and ANSYS post-buckling equilibrium paths − even if the maximum difference is almost the same (4.0% for 
point R2 and P=1.6Pcr), there is clear improvement in accuracy brought about by the inclusion of this mode. 

(v) Given the similarity between the frame (v1) critical buckling mode shape, displayed in figure 25, and (v2) 
deformed configuration, shown in figure 26, one may conclude it that the frame retains (at least qualitatively) its 
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 buckling deformation pattern throughout the whole post-buckling range (up until P=1.6Pcr). 
(vi) Lastly, note once more the very high computational efficiency of the GBT approach: its more “heavy” 

implementation (7 deformation modes and 24 beam finite elements − 8 per member) involves 346 degrees 
of freedom, against the more than 12500 required to perform a similarly accurate ANSYS analysis. 

6 VIBRATION ANALYSIS 

The system of differential equations to analyse the vibration behaviour of load-free or non-uniformly 
loaded isotropic members reads 
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where (i) ω are the member natural frequencies and (ii) Rik and Qik are mass components that are given in [31] and 
account for the influence of the inertia forces on the out-of-plane and in-plane cross-section displacements – these 
tensor components include both translational and rotational inertia forces. The solution of this eigenvalue problem is 
again obtained by means of a GBT-based beam finite element, developed and implemented by Bebiano et al. [31], 
who then employed it to analyse the vibration behaviour of simply supported C100×40×1.0 beams subjected to a 
uniformly distributed transverse load applied along the shear centre axis − maximum bending moment M, taken 
as a fraction α of its critical value (M=α Mcr). The most important aspects of this analysis are presented next. 

When investigating the vibration behaviour of a loaded member, it is necessary to begin by studying its 
buckling and free vibration behaviours. Figures 27(a)-(b) show the corresponding GBT modal participation 
diagrams composition for beam lengths in the range 10<L<1000cm, and also the ANSYS critical buckling 
and fundamental vibration mode shapes of the L=100cm. These buckling and vibration results show that: 
(i) For 10 <L<80cm, the beam critical buckling basically combine the local modes 7-10, even if non-negligible 

participations of the distortional modes 5 and 6 appear for L>30cm and grow steadily up to L≈80cm. Inside the 
80<L<130cm range modes 7-9 govern and for L>130cm modes 3+4 are clearly predominant. 

(ii) The fundamental vibration mode shape is predominantly (ii1) local (mode 7) for L<25cm, (ii2) distortional 
(mode 5, but relevant contributions from modes 3 and 7) for 25<L<120cm, (ii3) flexural-torsional-
distortional (modes 2, 4 and 6), for 120<L<400cm, and (ii4) purely flexural (mode 3), for L>400cm. 
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Figure 27: Beam (a) critical buckling (uniformly distributed load) and (b) fundamental free vibration modes. 
 

The curves in figure 28(a) provide the variation of the fundamental frequencies ωf.0 (α=0 – load-free member) 
and ωf.α  (α≠0 – members with eight M levels) with L. Moreover, figure 28(b) shows the modal participation 
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diagrams of beams with three of those α values. The observation of these results prompts the following remarks: 
(i) The load only causes noticeable fundamental frequency drops for α  0.25. Within the 0.5 <α < 0.95 range, the 

frequency drop rate increases significantly. Moreover, for α ≥ 0.90 the curves no longer decrease monotonically 
− they exhibit more or less pronounced upward branches at short-to-intermediate length ranges. 

(ii) Severe fundamental frequency drops (88% and 86%) occur for 110  L  145cm – within this length 
range, the vibration mode changes abruptly from (ii1) local (7-9) with 25 half-waves to (ii2) flexural-torsional-
distortional (3-6) with a single half-wave, i.e., a much more flexible configuration. In order to confirm this 
particular behaviour, the three ANSYS values included in figure 28(a) were determined – an excellent 
agreement was found, both in frequency values and vibration mode shapes (not shown here). 

(iii) The comparison between the modal participation diagrams for α=0 (see fig. 27(b)) and α=0.1 shows that, 
unlike the ωα value, the fundamental vibration mode shape may be considerably altered by the presence of even 
quite small applied moments − in fact, either the distortional mode 6 joins modes 5+7 (intermediate beams) 
or the global mode 3 join modes 2+4 (longer beams − they are totally separated for α=0). 

(iv) Inside the 0.1<α<0.95 range, (iv1) modes 8-10 gradually replace mode 7 (short beams), (iv2) the contributions 
of modes 5 and 6 become closer (intermediate beams) and (iv3) the relevance of mode 2 gradually fades (longer 
beams). Finally, for α >0.95 the vibration mode shapes change quite drastically, approaching their critical 
buckling mode counterparts − indeed, for α=0.999 the beam fundamental vibration and critical buckling modes 
virtually coincide throughout the whole length range, as attested by the comparison with figure 27(a). 
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Figure 28: Variation of the fundamental (a) frequency ωα and (b) vibration mode participation diagram with L 
(α=0.0, 0.95 and 0.999). 

7 DYNAMIC ANALYSIS 

Quite recently, Bebiano et al. [32] and Bebiano [33] developed a GBT formulation to analyse the local, 
distortional and global dynamic behaviour of open-section thin-walled members, which combines (i) the GBT modal 
discretisation with (ii) the classical Vibration Mode Superposition Principle (e.g., [34]. This approach yields an 
original “doubly modal” displacement field representation that provides in-depth insight on the mechanics involved 
in the member dynamic response. The main concepts and procedures associated with this GBT formulation are 
briefly described and commented next: 
(i) The system of GBT differential equilibrium equations describing the member dynamic behaviour is written as 
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 0qRQBDC ittkikxxttkikkikxxkikxxxxkik ,,,,  ,   (6) 
 
 where (i) k(x, t) are mode amplitude functions varying along the member axis and with time t, (ii) qi is the load 

resultant acting at a cross-section (obtained through the integration over its mid-line) and (iii) function (x,t) 
describes the variation of this load resultant with the cross-section location and time. 

(ii) The first step of solving (6) by means of the Vibration Mode Superposition Principle consists of determining the 
member (free) vibration mode shapes, which are the solution of the vibration eigenvalue problem defined by 
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 where function kj(x) provides the amplitude of the contribution of deformation mode k to the member vibration 

mode j, corresponding to the natural frequency j. The solution of (7) may be obtained (ii1) analytically, for 
pinned members, or (ii2) numerically (GBT-based finite element), for members with other support conditions. 

(iii) Then, the above vibration mode shapes are used as coordinates to represent the member dynamic response, i.e., 
the solution of (6)  (x, t). This solution is expressed as a linear combination of components of the form 
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 where (iii1) function Yj(t) describes the time evolution of the component akin to vibration mode j and (iii2) j 

varies between 1 and the number of vibration modes incorporated in the dynamic analysis (nv). The number and 
nature of such components depends on the particular GBT cross-section discretisation adopted and also on 
which subset of nd deformation modes are considered in the analysis. 

(iv) In order to determine the nv functions Yj(t), thus completely characterising the member dynamic response, 
it is necessary to solve the differential equation system 
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 where j

*(t) is the generalised load associated with the (vibration) modal coordinate j, whose determination 
depends on whether the vibration eigenvalue problem (7) is solved analytically or numerically. This system 
comprises nv uncoupled equations and, for most loadings, can be solved by means of standard analytical or 
numerical methods available in the literature. 

(v) The member displacement field can finally be expressed as a product of functions of (x, s) and t  one has 
 

}Y{] [ }{),,( x ,tsxu  ]{Y}[ }{),,( tsxv  ]{Y}[ }{),,( tsxw  ,   (10) 
 
 where (v1) the 1×nd vectors {u}, {v} and {w} contain the GBT deformation mode shapes uk(s), vk(s) and wk(s), 

(v2) the nd×nv matrix [ ] components kj(x) are longitudinal amplitude functions providing the contributions 
of each GBT deformation mode to each vibration mode, and (v3) the nv×1 vector {Y} comprises the vibration 
mode evolution functions Yj(t). Since (10) involves both GBT deformation modes and vibration modes, 
it may be viewed as a doubly modal representation of the member dynamic response. It is possible to identify 
the individual contribution of a given (v1) deformation mode (participating in several vibration modes) or 
(v2) vibration mode (involving several deformation modes) to the member overall dynamic response. 

7.1 Illustrative examples: lipped channel beams 

One analyses the dynamic behaviour of a simply supported (locally and globally pinned end section that may 
warp freely) C100 100 2.0 steel beam with length L=100cm and acted by (i) a uniformly distributed transverse 
load qz=0.01kN/cm2, applied on the web with a periodic (sinusoidal) time variation, and (ii) a point transverse 
load Qz=1.0kN, moving longitudinally (constant speed c) along the beam mid-web segment  see figures 29(a)-(b). 
The time-dependencies of these loads are described by the functions (t) = sin( t) and (x,t) = (x – c t), where 
(i)  is the angular frequency and (ii)  is the Dirac delta function. 

7.1.1 Preliminary vibration analysis 

Table 1 presents the results of the lipped channel beam free vibration analysis, required to assess the beam 
dynamic response by means of the Mode Superposition Principle. It includes information concerning the first 10 
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Figure 29: Lipped channel dynamic loadings: (a) uniformly distributed load and (b) moving point load. 

 
vibration modes, namely (i) the natural (angular) frequency values ωj, obtained by means of GBT and ANSYS (shell 
finite element) analyses, (ii) the relative differences Δ(%) between them, (iii) the number of longitudinal half-waves nj 
and (iv) the modal participation factors mpk(%). Due to the symmetry of the loadings (with respect to the member 
major plane), only symmetric (odd-numbered) deformation modes were included in the GBT analysis, which implies 
that the vibration mode orders are different in the GBT and ANSYS analyses (see the first and third columns of 
table 1) – the latter yields both symmetric (odd-numbered) and anti-symmetric (even-numbered) vibration mode 
shapes. Note also that, when analysing the beam acted by the uniformly distributed transverse load, only the vibration 
modes with odd half-wave numbers (i.e., longitudinally symmetric) need to be considered: the 1st,  3rd, 4th, 6th, 8th and 
10

th (GBT) vibration modes, whose mid-span cross-section deformed configurations are shown in figure 30. 
Table 1 shows that the ωj values yielded by the GBT (8 d.o.f.) and ANSYS (6341 d.o.f.) analyses are almost 

identical − the higher differences concern the 3rd and 4th (GBT) vibration modes and are equal to 3.11% and 1.49%. 
In spite of these small Δ values, it will be shown later that, in the particular cases dealt with here, the ω3 difference 
has a non-negligible impact on the beam dynamic response. 
 
Table 1: GBT and ANSYS beam free vibration analysis – ten first natural frequencies and vibration modes. 

GBT ANSYS Modal Participations (%) 

Mode ωj (rad/s) Mode ωj (rad/s) 
nj Δ(%) 

mp3 mp5 mp7 mp9 mp11 mp13 mp15 mp17 

1st 582.8 1st 582.2 1 0.11 0.58 98.15 1.01 0.22 0.02 0.02 0.00 0.00 

2nd 1307.3 3rd 1297.2 2 0.77 0.18 93.4 5.24 0.99 0.06 0.10 0.02 0.01 

3rd 1871.2 6th 1814.8 1 3.11 53.61 32.61 5.34 7.54 0.55 0.26 0.06 0.02 

4th 2436.4 7th 2400.6 3 1.49 0.14 73.42 23.35 2.46 0.1 0.43 0.06 0.03 

5th 3219.0 9th 3180.1 4 1.23 0.11 41.82 54.7 1.28 1.09 0.85 0.10 0.05 

6th 3557.7 10th 3549.3 1 0.24 5.89 45.00 47.24 0.93 0.20 0.60 0.12 0.03 

7th 3660.5 11th 3642.8 2 0.49 1.47 47.56 42.64 7.17 0.66 0.38 0.08 0.04 

8th 3681.4 12th 3646.2 5 0.96 0.07 22.04 72.47 1.52 2.39 1.32 0.13 0.06 

9th 4097.3 16th 4061.4 6 0.88 0.04 12.57 77.85 3.95 3.52 1.81 0.17 0.08 

10th 4260.4 17th 4227.7 3 0.77 0.27 52.82 33.34 11.91 0.89 0.58 0.12 0.06 

 

3rd 4th 6th 8th 10th 1st

 
Figure 30: Mid-span cross-section deformed configurations of the 1st, 3rd, 4th, 6th, 8th and 10th vibration modes. 
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 f=50 s−1), (ii) is “smooth” and exhibits a much higher maximum value when the load is well within the beam 
span, for intermediate speeds (e.g., f=250 s−1), and (iii) is again “smooth” but exhibits its maximum value 
when the load leaves the beam, for high speeds (e.g., f >600 s−1). In the latter case, the maximum displacement 
drops as f increases (recall that the free vibration behaviour occurring after the load exit was neglected) –
f 600 s−1 may be viewed as a “critical crossing speed”, in the sense that the maximum displacement occurs 
exactly when the load is about to leave the beam. Note also the slower beam response as f increases − wP

* 
remains practically null up to progressively higher x/L values. 

(ii) Due to the presence of distortional and (mostly) local deformation, the total deformation dynamic influence 
lines are much more irregular than their flexural counterparts. Nevertheless, they display similar qualitative 
features, even if the amplification levels are now much higher (note the different vertical scales in figs. 34(a) 
and 34(b)) − this fact provides clear evidence of the relevance of the cross-section in-plane deformation. 
Finally, note the virtual coincidence between the GBT and ANSYS f=250 s−1 influence lines. 

8 CONCLUDING REMARKS AND FUTURE DEVELOPMENTS 

This paper presented a state-of-the-art report on the most recent developments concerning formulations, 
numerical implementations and applications of GBT to analyse the structural response of thin-walled steel members 
and frames. Following an overview of the fundamental concepts and main procedures involved in the performance of 
the cross-section analysis, a unified view of the research activity recently carried out at IST (Technical University of 
Lisbon) was provided, namely by presenting brief accounts and illustrative examples for the various GBT 
formulations and numerical implemented (beam finite elements) developed in the last couple of years. In particular, 
the numerical results presented and discussed, aimed at showing the capabilities (numerical efficiency and structural 
clarity) of the novel GBT approaches, concern the local, distortional and/or global: 
(i) First-order behaviour of steel-concrete composite beams and bridge decks (i1) with cross-sections that combine 

closed cells with open branches and may include diaphragms (displacement restraints), and (i2) acted by 
eccentric vertical loads. Shear lag effects were also taken into account, through the incorporation of specific 
deformation modes associated with non-linear (sinusoidal) warping along the steel flanges. 

(ii) Buckling behaviour of members and frames subjected to complex loadings (namely those causing non-uniform 
internal force and moment diagrams) and exhibiting non-standard end and localised support conditions (e.g., 
those modelling displacement restraints associated with bracing systems). Frames built from RHS members 
were also analysed (but subjected loadings causing only member axial compression). 

(iii) Post-buckling behaviour of open-section beams subjected to non-uniform bending, exhibiting localised support 
conditions and containing critical-mode initial geometrical imperfections. 

(iv) Post-buckling behaviour of frames built from open-section profiles, subjected to simple loadings (member axial 
compression only), exhibiting standard end support conditions (pinned, fixed or free end sections) and also 
containing critical-mode initial geometrical imperfections. 

(v) Vibration behaviour of open-section members subjected to non-uniform internal force and moment diagrams 
and exhibiting standard end support conditions. 

(vi) Dynamic behaviour of open-section members subjected to various loadings, such as a periodic uniformly 
distributed load or a point load moving along the member span. 
For validation and computational efficiency assessment purposes, most the above GBT-based numerical results 

were compared with values yielded by shell finite element analyses performed in commercial codes (ADINA, ABAQUS 
and ANSYS). Despite the huge disparity between the numbers of degrees of freedom involved in the two analyses 
(orders of magnitude apart), an excellent agreement was invariably found. Moreover, the unique modal features of 
GBT make it possible to acquire in-depth insight on the mechanics of the structural problems investigated and, 
in some cases, unveil and/or shed new light on interesting phenomena. One must also stress the fact that one-
dimensional beam models (but including folded-plate theory concepts) are able to provide accurate solutions for 
various 3D problems involving cross-section in- and out-of-plane deformations of prismatic thin-walled members 
and frames. For instance, it was possible to investigate in this paper aspects related to the: 
(i) Influence of diaphragms located in specific composite bridge deck cross-sections. 
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(ii) Influence of the load position on the cantilever local, distortional and global buckling behaviour. 
(iii) Buckling and post-buckling behaviour of members and frames with localised displacement restraints. 
(iv) Relevance of including local deformations in the dynamic analysis of thin-walled members. 

At this stage, it is also worth mentioning the recent development of a preliminary version of a GBT-based code 
to perform buckling and free vibration analyses of open-section single-span thin-walled members with various end 
support conditions and acted by non-uniform axial compression and/or bending moment diagrams. This code is 
designated GBTUL1.0β [36] and can be freely downloaded from a TU Lisbon web page [37]. 

Before closing the paper, it is worth devoting a few words to mention work either currently under way or 
planned for the near future, concerning the development/implementation, application and dissemination of 
GBT formulations. It aims at covering the following (more or less specific) topics: 
(i) Local, distortional and global dynamic behaviour of high-speed railway bridge decks – some results have 

already been reported [38]. 
(ii) First-order and buckling behaviour of steel-concrete composite structures including an improved concrete 

material modelling, namely by taking into account the non-linear effects due to cracking. 
(iii) Buckling behaviour of plane and space frames acted by transverse loadings applied, taking into account (iv1) 

localised effects associated patch loading and/or (iv2) destabilising/stabilising effects stemming from the 
location of the load point of application within the cross-section (with respect to the shear centre). 

(iv) Local, distortional and global post-buckling behaviour of plane and space frames built from open and closed-
section members and exhibiting arbitrary loading and support conditions. 

(v) Vibration and dynamic behaviour of plane and space thin-walled frames. 
(vi) First-order, buckling and post-buckling behaviour of elastic-plastic thin-walled steel members and frames − in 

particular, the first step of this research effort will consist of trying to develop a “spatial plastic hinge approach”. 
Finally, one last word to inform that an upgraded version of the code GBTUL1.0β [36, 37] will be made available 

in the near future. Besides correcting the bugs detected in the preliminary version, this second version will (i) have a 
friendlier graphical interface and (ii) cover members with arbitrary polygonal cross-sections, namely those combining 
closed cells with open branches. Moreover, the development of user-friendly and easy-to-use GBT-based numerical 
tools to analyse the fist-order and buckling behaviour of open and closed-section thin-walled steel frames is 
also planned for the not too distant future. 
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