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Abstract. Flange thickness transitions constitute the most common constructional detail used to adapt the 
flexural resistance of bridge girders to variable bending moment distributions. The sudden change of 
stiffness distribution within the cross-section at these details causes additional local forces, stresses and 
deformations that cannot be properly taken into account by classical beam-theory calculations. Although 
these effects have been known in principle for some time, their correct inclusion in practical calculations 
has gained significance over the last years due to the use of thicker flange plates. The study presented in 
this paper focuses on the description of the realistic buckling behavior of bridge girder flanges at 
thickness transitions, whereby both linear and non-linear FEM calculations using shell elements are 
used and compared to the rather inaccurate predictions of the simple beam theory. One objective of this 
paper is also to give guidance to the designer concerned with the buckling strength of the girder flanges. 

1 INTRODUCTION 

Flange thickness transitions and cover plates constitute two of the most common constructional 
details used to adapt the flexural resistance of bridge girders to variable bending moment distributions 
(Fig. 1). In the past, one or more additional cover plates have been added to flanges in riveted and welded 
constructions. Fig. 2 illustrates such constructional details used for welded girders, whereas flange 
thickness transitions can be provided by a variation in flange thickness only. The strengthening of the 
flange can be realized by flush upper edge, by centric arrangement or by flush lower edge, the latter 
allowing for an easier erection of laterally moved bridge girders. 

Concerning the load carrying capacity of such flange thickness transitions, the buckling stability has 
to be verified with respect to the individual plate buckling slenderness of the two joined flanges. However 
eccentricity effects in connection with local imperfections, frequently caused by welding distorsion, need 
to be considered specifically. It has been observed that such local flange imperfections can be of 
considerable amount, see Fig. 2. Current codes for plate buckling, as Eurocode 3-1-5 [2], contain design 
provisions for plates with thickness transitions which recommend the use of transversal stiffeners for 
local restraint of these points. 

In the present paper, the stability behavior will be investigated by means of linear buckling analyses 
(LBA) and geometrically materially nonlinear analyses including imperfections (GMNIA) using Abaqus 
[3], whereas in previous publications particularly the general stress state and the fatigue problem of 
flange thickness transitions have been addressed so far [5][6][7][8]. 

 



142

A. Lechner et al.

Figure 1: Overview of flange thickness transitions to adapt the flexural resistance of bridge girders in 
accordance with non-uniform bending moment distributions (a); constructional details with additional 

cover plates or with local variation in thickness of the flanges (b).  

Figure 2: Geometrical imperfections in a large bridge girder, mainly caused by welding distorsion. 

In Fig. 3 results of linear elastic analyses of a bridge girder with welded flange thickness transitions 
under uniform bending are shown. In the vicinity of the transition considerable additional shear in the 
web lower edge will be induced depending on the difference of axial force N in the flanges due to the 
bending moment. The length of the decay of these forces is approximately the depth of the I-section. For 
the given case this would be 3500 mm. The results are plotted for three different flange configurations: 
flush upper edge (fup), centric and flush lower edge (flo). In case of flo the highest additional shear forces 
are induced, while centric causes the lowest effects. 

A second effect should also be noted, i.e. the diagram of the axial flange forces which indicates a 
considerable increase of the flange force of the thinner flange when it approaches the point of the flange 
thickness transition. Since classical beam-theory disregards this effect totally, attention should be paid to 
it when considering the local flange buckling behavior in this region under compression. 

stress design line 
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Figure 3: Elastic shear force distribution on web lower edge and axial force distribution in bottom flange. 

2 ELASTIC CRITICAL BUCKLING BEHAVIOR 

As a first step the local buckling behavior of the flange plate alone will be studied on basis of a three-
sided supported plate with and without flange thickness transitions. The loading consists of a constant 
stress distribution x across the width of the plate, acting in direction a. The numerical investigation has 
been carried out by using Abaqus [3] and the results have been compared to the analytical results from 
the classical Kirchhoff theory. (Approximately 8400 S4 – 4 node shell elements have been applied, shear 
effects were considered, 19 integration points were defined in thickness direction.) 
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Figure 4: Plate buckling coefficients k , comparison of FE-results with analytical solution and CUFSM. 
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Three different width-to-thickness ratios have been studied; the parameters are b/t = 5.7, 15 and 50, E 
= 210000 N/mm2, =0.3. The results are shown by k - -curves in Fig. 4. In the calculations of the plates 
with constant thickness it was observed that the solution from Abaqus for thicker shells (b/t = 5.7) was 
app. 6%  lower than the analytical result and the result from the Finite Strip Method CUFSM [4], which 
is due to the consideration of shear effects in the Abaqus analysis. In contrary the results for thin shells 
are fully coincident.  

Then, the flange thickness transition of the plate was investigated. It was modeled by a definition of 
variable shell-thickness in the transition zone. The transition zone was placed in the half length of a. 

It was found that the elastic plate buckling behavior is enhanced considerably depending on the 
thickness-ratio of the two adjacent flanges t1/t2. The k -value can be doubled or even more for shorter 
plates (Fig. 5). A closer consideration of the results shows that for cases of t1/t2.  1.5 local buckling is 
developed only in the thinner plate, since at the thickness transition the thicker plate provides support 
conditions for the thinner one.  

The influence of different flange configurations on the buckling coefficients k  was also investigated. 
The results were nearly coincident for fup, flo and centric – only for short plates with a/b < 5 the buckling 
coefficients increase by app. 3 % for eccentric configuration compared to centric.

1,0050,948

0,737
0,621

1,425

0,869

0,675
0,585

0,536
0,488

0,441 0,435 0,428

0,25

0,50

1,00

2,00

4,00

8,00

16,00

1 2 4 8 16

k
[-

]

=a/b [-]

c/t=15, t1/t2=6.0, flo

c/t=15, t1/t2=3.0, flo

c/t=15, t1/t2=1.5, flo

c/t=15, t1/t2=1.25, flo

c/t=15, t1/t2=1.0, CUFSM

c/t=15, t1/t2=1.0, abq

analytic

Figure 5: Plate buckling coefficients k  of plates with different flange thickness transitions t1/t2.

Moreover a supplemental buckling study on the I-sections of the girder with thickness transition in 
the compression flange was conducted. In this study only flange local buckling was allowed, while global 
buckling was excluded. Thereby the effects of the increase of the flange force of the thinner flange in the 
transition zone, which is shown in Fig. 3 above, have been investigated. The results were compared with 
the buckling results of the three-sided supported plate with thickness transition loaded by a constant axial 
force. It was found, that the recalculated buckling coefficients from the girder study were – with a 
variation of about +/- 8 % – close to those of the corresponding single plate with thickness transition. 

3 NONLINEAR BUCKLING ANALYSES  

3.1 Overview on numerical modeling 

The focus of this investigation lies on the nonlinear analysis of girders with I-section with slender 
flanges in compression. Configurations with and without thickness transition (t1/t2) were considered. The 
nonlinear load carrying capacity of the girders was determined and compared with the results of the 
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classical beam theory, i.e. neglecting local effects at the transition point. Thereby, the results of I-sections 
with constant flange thickness serve as base values for the investigation of the nonlinear behavior of the 
sections with thickness transitions. In this publication only a ratio of t1/t2=3.0 is published (sect. 3.3), 
although a larger number of ratios t1/t2 has been investigated.  

In the Finite-Element model, S4 – 4 node shell elements have been applied as for the flat plate before 
(sect. 2). The web and the upper flange were modeled by S4 elements with similar element size. The web-
flange connections were modeled by pin-connectors, whereby all rotational degrees of freedom remained 
uncoupled. Pure local buckling was allowed in the compression flange (bottom flange), which means that 
in particular global stability effects and restraining effects of the web-flange conjunction have been 
disregarded. Imperfections were only applied to the compression flange by geometrical and structural 
imperfections. According to Eurocode 3-1-5 [2] the geometrical imperfections of the flange plates were 
modeled pursuant to the fabrication tolerances with an amplitude of 80 % of its tolerance limits. The 
residual stresses R were modeled by the yield stress R=fy in the welding zone and by R=-0.2*fy in the 
remaining flange area, being in self-equilibrium and following a trapezoidal distribution shown in Fig. 6 
in the diagram and by the FE-contour plot increment 0. The examples presented in this numerical study 
are based on a flange width of the bottom flange Bbf = 600 mm (= compression flange), which leads to a 
geometrical imperfection of e0 = 4.8 mm, which is 80 % of Bbf/100 = Bbf/125. In the cases of flanges of 
constant thickness, the geometrical imperfection is assumed to follow its 1st buckling eigenmode. 
However in all cases of flanges with thickness transitions, the geometrical imperfections were modeled as 
local flange undulations according to [1] with an amplitude of e0 = 4.8 mm, based on a gauge length 
equal to the flange width Bbf. In general, the nonlinear investigations presented herein are based on a 
length of the flange plate of a = 6000 mm. So far, girders with I-section were loaded in pure bending, 
leading to constant axial forces in the flange plates in the classical beam theory model. The load 
introduction at the end of the girders was realized by rigid I-sections, which were pin-connected to the 
adjacent shell elements of the flanges and the web. 

In order to investigate the buckling behavior of these compression flanges of girders with I-section 
and to compare it with the corresponding buckling behavior of a three-sided supported plate with equal 
geometry and material, the numerical simulations have been carried out for single plates as well. Its 
results are included in the diagrams of the following sections 3.2 and 3.3. 

3.2 Results of I-sections with constant flange thickness 
In Fig. 6 the load displacement diagrams for the girders of I-sections with constant flange thickness 

are shown for three different assumptions of the local imperfection (i.e. e0 = 3.0 mm resp. 4.8 mm with or 
without R). On the abscissa the total vertical displacement U3 of the outmost node of the compression 
flange at midsection is plotted, which comprises the deformations caused by the global bending of the 
girder and those by the local buckling of the flange plate itself. On the vertical axis the non-dimensional 
load-carrying capacity resulting from Abaqus is shown, though divided by the section capacity of the 
effective cross-section according to [2]. For the given example, the compression flange was classified as 
Class 4 with a buckling reduction factor of  = 0.817, while in the web buckling was prohibited. The 
results show, that for the nonlinear analysis including geometrical and structural imperfections the section 
hardly can achieve the section capacity defined by [2]. In Figure 7 this is shown in the left diagram by the 
illustration of the forces in the compression flange. Regardless of the deformation state the EC 3 capacity 
of N/Npl,bf = 0.817 cannot be achieved, this means that only due to web plastification the load factor of 
1.09 at increment 120 can be explained. The result of the FE-analysis of the flange plate alone (plate) 
achieves a similar result by NGMNIA/Npl,bf  0.70. 

On the contrary, Fig. 6 and Fig. 8 show for the analysis without residual stresses that the numerical 
simulation easily can achieve the EC3 design limit. A maximum load factor of 1.074 can be attained 
already at small deformations. The investigation of the normal force in the flange shows a result of 
NGMNIA/Npl,bf  0.9, which is significantly beyond the design limit of  = 0.817 (Fig 8, left diagram). 
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Figure 6: Load-displacement diagram for I-section with constant flange thickness and variation of buck-
ling imperfections in bottom flange; GMNIA contour plots for increments 0 and 120, membrane stresses. 
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Figure 7: I-section with constant flange thickness, flange forces and shear stress at web bottom edge; with 
geometrical imperfections plus residual stresses. 
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Figure 8: I-section with constant flange thickness, flange forces and shear stress at web bottom edge, with 
geometrical imperfections only. 
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In addition, shear stress distributions in the bottom web edge are plotted in Fig. 7 and Fig. 8. It was 
found that during local buckling of the flange plate a rather significant redistribution of flange axial force 
into the web occurs. This leads to these nonlinear axial force distributions along the axis of the girders. 

3.3 Results of I-sections with flange thickness transition t1/t2 = 3.0 

In Fig. 9 the load displacement diagrams of the girders with I-section with flange thickness transitions 
of t1/t2 = 60/20 mm = 3.0 are shown for four different configurations: a) geometrical imperfection Bbf/125 
and residual stress R, b) geometrical imperfection Bbf/125 only, c) imperfection type a) plus vertical web 
stiffener, d) imperfection type b) plus vertical web stiffener at the transition point.  

Figure 9: Load-displacement diagram for I-section, flange thickness transition t1/t2 = 3.00, variation of 
buckling imperfections on bottom flange; GMNIA contour plots for incr. 0 and 100, membrane stresses. 

Figure 10: I-section with t1/t2 = 3.00, flange forces for configurations without (a) and with (b) vertical 
stiffener at the transition point. 
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considerable flange eccentricity at the transition point, that a significant restraining effect of the thicker 
flange on the thinner flange plate appears. The configuration a) without web stiffener leads to a factor of 
1.14 by Abaqus, which is considerably beyond the EC 3-limit of 1.0. For the configuration c) with web 
stiffener at the transition point a maximum load factor of app. 1.34 has been achieved. The axial force 
distributions for the compression flange shown in Fig. 10 also illustrate this positive behavior.  

For comparison, the plate-solution that is shown in Fig. 10 achieves a factor of NGMNIA/Npl,bf = 0.72, 
which is even larger than the result of 0.70 for constant flange thickness (sect. 3.2). It may be concluded, 
that the restraining effects caused by the thicker flange are more beneficial than the detrimental effects 
due to flange eccentricity. Considering beneficial restraining effects of the web, which have not been 
investigated in this publication, the results would lead to an even more conservative behavior. 

11 CONCLUSION 

Concerning flanges with thickness transitions, the rules according to EN 1993-1-5 [2] define vertical 
stiffeners in the thinner flange close to the transition point (Fig. 11 (b)). Since this requirement could not 
be confirmed by this numerical study, further investigations in combination with laboratory experiments 
should be performed. At present, one experimental test was carried out at the Laboratory for Structural 
Testing (LKI) at Graz University of Technology (Fig. 11(a)). By the evaluation of this test, the need for 
additional stiffeners according to EN 1993-1-5 could not be approved as well. More detailed results on 
this test will be presented in subsequent publications. 

Figure 11: Laboratory test of I-section with flange thickness transition, LKI, Graz University of 
Technology (a); location of additional vertical stiffener according to EN 1993-1-5 (b). 
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