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Abstract. The practical difficulties presented by forced vibration testing of large steel structures, such as 
tall buildings, transmission lines or bridges, led to an increased interest in structural monitoring through 
ambient vibrations, which usually allows the proper identification of modal properties, natural 
frequencies, damping and modes of vibration. Changes in these modal properties constitute an indication 
of structural damage, which may then be assessed on the basis of experimental evidence. The authors 
proposed an approach to determine the so-called damage damping and stiffness matrices, which are 
essential to identify the location and intensity of damage. No restrictions were introduced on the damping 
matrix of the system. The approach requires ambient vibration data of all relevant coordinates used in 
the structural model, which are processed employing the SSI method. In practice, the identification 
method is seriously hampered by ambient factors such as temperature or humidity. In general those 
effects must be filtered out in other to obtain a reliable diagnosis of damage, approach that demands long 
term monitoring. In this paper, an alternative approach is explored, based on the introduction of error 
damping and stiffness matrices. Data on both matrices is generated on the basis of observed variations of 
structural member stiffness and damping caused by ambient factors. The influence of this uncertainty on 
the identified spectral properties is assessed by simulation. 

1 INTRODUCTION 

In recent contributions the authors examined experimental evidence concerning the influence of 
ambient factors on the spectral properties of dynamic systems [1], [2], [3]. Proposed procedures to 
eliminate those effects from vibration measurements aimed at damage detection in structural systems [4] 
demand extensive monitoring to cover the range of expected variations of ambient conditions. These 
requirements may render them either too expensive or simply unfeasible due to technical or logistic 
reasons. Moreover, the issue introduced by noise in the system matrices, which should be distinguished 
from noise in the vibration recording system, is largely ignored. Empirical or semi-empirical results of 
those contributions are briefly described for completeness in next section. 

In this paper, however, the authors follow an entirely different approach. Changes in the system 
matrices are assumed to belong in one of two types: reversible and irreversible. The first are due to so-
called ambient factors, which include temperature, humidity, and other effects, while the second 
constitute evidence of damage. In the absence of damage, which is the topic of the present study, the 
components of the mass, damping and stiffness matrices of the system must necessarily be stationary 
random processes. It follows that the components of the error matrices, defined as the difference between 
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the system matrices at any arbitrary time and the reference matrices that describe the condition of the 
system in its initial state must be random variables with zero mean. Hence, the effect of the so-called 
error matrices on the system spectral properties is assessed first. These matrices are generated by 
multiplying all components of the reference matrices by uncorrelated normally distributed random 
coefficients with zero mean and prescribed standard deviation. 

2 INFLUENCE OF AMBIENT FACTORS ON SPECTRAL PROPERTIES OF 
STRUCTURAL SYSTEMS 

In previous papers [5], the authors examine available experimental evidence on the influence of 
ambient factors on steel and concrete structures. In [1] it was shown that, in a limited number of samples 
of concrete structures, the expected value  of the ratio between observed natural frequencies of structural 
systems at a mean temperature different from the reference temperature and the frequencies measured at 
the reference temperature may be estimated by the equation: 

 = 1 – 0,002 T – 0,0003 h (1) 

In which T denotes the temperature difference (positive value indicates temperature increase) and 
h the change in atmospheric humidity. Similarly, the expected value  of the ratio between the critical 

damping ratio affected by ambient factors and the damping ratio measured at reference conditions is 
given by: 

 = 1 + 0,018 T – 0,0049 h (2) 

On the other hand, the following expression was obtained for steel structures [3]: 

 = 1 – 0,00051 T (3) 

By means of simple models of struts, Riera et al (2008) estimate that the maximum values for the 
temperature coefficients in Eq. (1) span between 0.005 (elements subjected to tensile force) and 0.015 
(compressed elements). In case of steel structures (Eq. 3) these limits are 0.0084 and 0.0028, 
respectively. 

In the same study, in order to assess the influence of temperature on natural frequencies, an artificial 
neural networks was constructed and it perform in the same way: the network input is a T value which 
means changes in temperature (˚C) from reference values (increase is positive) and the output provides a 
correction factor that should be multiplied by the measured natural frequency. The linear regression 
equation (Eq. 3) and results obtained with the ANN for the training and validating subsets are shown in 
Figure 1. 
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Figure 1: Linear regression equation and ANN results. 
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If the equation for the frequency change is thus of the form: 

 = 1 – c T (4) 

It may be expected that the stiffness affected by ambient factors and the reference stiffness will be 
related by ½. If this ratio is denoted as , then it follows that: 

 = 1 – ½ c T (5) 

Consequently, Eq.(5) estimates the expected value of the ratio between stiffness coefficients in the 
structure affected by ambient factors and stiffness coefficients in the structure in the reference condition, 
in which the spectral properties were experimentally determined. Note that T denotes the mean 
temperature change between both conditions, while the temperature as well as the slenderness and axial 
loads in individual members vary throughout the structure. In this context, it is proposed herein that the 
ratio between corresponding stiffness coefficients Kij is a random variable ij with mean given by Eq. (5) 
and variance to be later defined. In the simulation analysis, the stiffness matrix affected by ambient 
factors is obtained by multiplying the coefficients Kij of the reference matrix by a set of uncorrelated 
random numbers ij.

On the other hand, if Cr and Mr are the generalized damping and stiffness coefficients of the rth mode 
the structure, then under certain conditions and proportional viscous damping the following equation 
holds:

Cr / Mr = 2 r r (6) 

In which r and r denote the critical damping ratio and the frequency of mode r. A similar equation 
may be written for the matrix of the system affected by ambient factors. Assuming that the mass matrix 
remains constant, the mean ratio  between the coefficients of the modified and reference damping 
matrices can be shown to be of the form: 

Cr / Cro =  ( r / ro ) ( r/ ro) (7) 

The left-hand side of Eq.(7) may be identified as  while the ratios between parenthesis in the right-
hand side are  and , respectively, leading to: 

 =   (8) 

For concrete structures, substitution of Eqs. (2) and (4) in Eq. (7) leads to: 

 = 1 + 0.016 T (9) 

Using the same arguments, the coefficients of the damping matrix after and before the introduction of 
ambient factors are related by a random variable ij with mean given by Eq.(8). 

3 INFLUENCE OF ERROR MATRICES ON SPECTRAL PROPERTIES OF 
STRUCTURAL SYSTEMS 

3.1 Effect of changes in the stiffness matrix 

Some theoretical results will be recalled first: if the stiffness matrix of a linear system without 
damping is multiplied by a constant factor, the eigenvectors, i.e. the vibration modes, do not change, but 
the natural frequencies should be multiplied by the square root of the factor. This would be equivalent to 
considering an error stiffness matrix that is proportional to the original matrix. 

The influence on the mean spectral properties introduced by stationary random changes in the 
stiffness matrix due to ambient factors will be assessed first by simulation, considering for such purpose 
the typical steel truss structure shown in Figure 2. This plane Warren truss consists of 37 nodes and 71 
steel bars, which have a cross section of 2×10-3m2. Young’s modulus of the material is 2×1011N/m2 and 
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its mass density 7.86×103kg/m3. The height of the truss is 9m while the total length is 168m. The 
supports of the structure are modeled as two hinged supports at nodes 1 and 37 and as a roller support at 
node 19. The pinned end allows nodes to rotate freely with all three translations restricted. 

Figure 2: Continuous Warren truss adopted for simulation study. 

Stiffness matrices affected by noise were generated by multiplying all components of the reference 
stiffness matrix by uncorrelated normally distributed random coefficients with zero mean and coefficients 
of variation (CV) equal to 0.01, 0.03, 0.05 and 0.10. For each CV, 100 disturbed simulated stiffness 
matrices were generated. The natural frequencies for the first seven modes were next determined for each 
simulated sample and the corresponding mean calculated next (Table 1). 

Table 1: Natural frequencies comparison (Hz). 

CV = 0.01 CV = 0.03 CV = 0.05 CV = 0.10
Original

Mean
Difference 

(%)
Mean

Difference 
(%)

Mean
Differenc

e (%) 
Mean

Differenc
e (%) 

3.14377 3.1440 -0.01 3.1419 0.06 3.1388 0.16 3.1243 0.62 
4.74475 4.7449 0.00 4.7417 0.07 4.7373 0.16 4.7151 0.62 
8.63623 8.6357 0.01 8.6292 0.08 8.6255 0.12 8.6023 0.39 
11.7569 11.7573 0.00 11.7487 0.07 11.7281 0.24 11.6536 0.88 
11.9576 11.9584 -0.01 11.9549 0.02 11.9476 0.08 11.9270 0.26 
18.6109 18.6103 0.00 18.5934 0.09 18.5808 0.16 18.5277 0.45 
20.6468 20.6454 0.01 20.6247 0.11 20.6125 0.17 20.5373 0.53 

It may be seen that a trend to observe smaller frequencies that steadily decrease with the coefficient 
of variation of the fluctuating components of the stiffness matrix is perceptible for all modes, 
approaching 0.5% for a CV of around 10%. Since frequency changes of this order would already be 
indicative of damage, it is clear that the effect cannot be disregarded and that further studies are needed, 
first to quantify it in different structural systems and then to filter it out in damage identification 
procedures.

3.2 Influence of changes in the damping matrix 

Changes in damping can be quite relevant in the detection of damage in structural systems [2]. Thus, 
the influence of ambient factors on critical damping ratios, introduced by random changes in the damping 
matrix, will be assessed by means of numerical simulation. For this purpose, the three bays 10-stories 
high steel frame shown in Figure 3, considered earlier [6], was studied. The structure was designed in 
accordance with the provisions of the Uniform Building Code. The total mass per floor is 47 t and 
damping matrix is assumed to be proportional to a combination of the mass and the stiffness matrices 
(Rayleigh damping). The modal damping ratio in each mode is shown in Table 2. Frame and member 
dimensions are also indicated in Figure 3. 

The noisy damping matrices were generated by multiplying all components of the original damping 
matrix by uncorrelated normally distributed random coefficients with zero mean and coefficients of 
variation (CV) equal to 0.1 and 0.15. These values were adopted because for CVs lower than about 0.15, 
the damping matrices with random noise continue being approximately proportional, and thus, there is no 
difficult to obtain the modal damping ratios as in the original damping matrix. For each CV, 1000 
simulated noisy damping matrices were generated. The modal damping ratios for the first seven modes 
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were next determined for each simulated sample. The mean values of the modal damping ratios for each 
mode obtained from the simulated damping matrices affected by random noise are compared in Table 2 
with the modal damping ratios for the modes of the original structure. Table 2 also presents the 
corresponding coefficients of variation of the population of simulated structures. The results show slight 
changes in the modal damping of the first three modes, which increase with the CV of the noise terms.

Figure 3: Three bays 10-stories high steel frame adopted in simulation study. 

Table 1: Modal damping ratios comparison. 

CV = 0.10 CV = 0.15
0

0.1 
Difference 

(%) 0.15
Difference 

(%)
0.0100 0.0103 -3.28 0.0105 -4.83 
0.0051 0.0056 -7.97 0.0055 -7.42 
0.0049 0.0052 -6.15 0.00488 1.15 
0.0056 0.0057 -1.89 0.0056 -1.45 
0.0068 0.0069 -1.10 0.0069 -1.10 
0.0082 0.0083 -0.84 0.0082 0.00 
0.0100 0.0100 0.00 0.0100 0.00 

For higher values of the CV the proportionality property of the damping matrices including noise is 
no longer an acceptable assumption and the assessment of the influence of noise becomes more difficult. 

4 CONCLUSION 

In this paper, the effect of so-called error matrices on the spectral properties of structural systems is 
examined. The study aims at providing data to assess the range of application and general validity of 
empirical expression obtained earlier by the authors. The error matrices were generated herein by 
multiplying all components of the reference matrices by uncorrelated normally distributed random 
coefficients with zero mean and prescribed standard deviation. 
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The influence on the natural frequencies due to random changes in the stiffness matrix due, for 
instance, to ambient factors, was assessed first, considering for such purpose a typical steel Warren truss. 
A trend to lower frequencies that steadily decrease with the CV of the fluctuating components of the 
stiffness matrix is perceptible for all modes, approaching 0.5% for a CV of around 10%. Since frequency 
changes of this order would already be indicative of damage, it is clear that the effect cannot continue 
being disregarded in efforts to detect and quantify damage through ambient vibrations.  

The influence of ambient factors introduced by random changes in the damping matrix was assessed 
in a three bays 10-stories high steel frame. Slight changes in the modal damping of the first modes, which 
increase with the CV of the noise terms were detected.  

These results are considered as an intial step in efforts to reduce uncertainties in procedures proposed 
to detect and quantify damage in steel structures through ambient vibration monitoring. 
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