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Abstract. Structural systems in a variety of applications including aerospace vehicles, automobiles and 
engineering structures such as tall buildings, bridges and offshore platforms, accumulate damage during 
their service life. The approach used in this investigation is one where the structural properties of the 
analytical model are varied to minimize the difference between the analytically predicted and empirically 
measured response. This is an inverse problem where the structural parameters are identified. In this 
work a reduced number of vibration modes and nodal displacements were used as the measured 
response. For the damage assessment problem a finite element model of the structural system is available 
and the model of the damaged structure will be identified. Damage will be represented by a reduction in 
the elastic stiffness properties of the system. In this investigation, the Differential Evolution (DE) and the 
Ant Colony Optimization (ACO) were applied to simple truss structures with different levels of damage. 

1 INTRODUCTION 

In a typical load bearing structure, degradation of structural properties due to damage manifests itself 
as a change in the static and dynamic response. A correlation of the measured response with that obtained 
from an analytical model of the undamaged structure, allows for the possibility of determining a modified 
model that predicts the altered response. This inverse problem is solved using a system identification 
technique [1]. 

In this paper the output error approach of system identification is used to determine changes in the 
structural parameters that result from structural damage. Damage is represented by reduction in the 
elastic properties of the element. The net changes in these quantities due to damage are lumped into a 
single coefficient di for each element that is used to multiply the stiffness matrix of that particular 
element. These coefficients di constitute the design variables for the resulting optimization problem. 

Static displacements and eigenmodes are used as measured data for the inverse problem of damage 
detection. Reduced sets of eigenmodes and static displacements are used [2-3]. The approach of 
considering one design variable di for each element in the structure usually results in a large 
dimensionality problem. 

These results in a very nonconvex design space, probably with several local minima, where Gradient-
based nonlinear methods for function minimization may have difficulties to find the global optimum. In 
this work two global optimization methods, the Differential Evolution and the Ant Colony Optimization 
which are two heuristic population based methods were used for function minimization. 
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2 STRUCTURAL DAMAGE ASSESSMENT 

In a finite element formulation, structural characteristics are defined in terms of the stiffness, 
damping, and mass matrices [K], [C] and [M], respectively. The governing equation of equilibrium for a 
dynamical system involves each of these matrices, and can be written using Equation (1). In Equation (1), 
x is the displacement vector and P(t) is the vector of applied loads. The static load-deflection relation 
only involves the system stiffness matrix, as presented in Equation (2). 
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The analytical model describing the eigenvalue problem for an undamped system can be stated in 
terms of the system matrices defined above, the i-th eigenvalue i

2, and the corresponding eigenmode Yi 
as follows: 
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It is clear from these equations that a change in the system matrices results in a different structural 

system response and this difference can be related to changes in specific elements of the system matrices. 
Since internal structural damage typically does not result in a loss of material, it will assume the mass 
matrix to be constant. 

The stiffness matrix can be expressed as a function of the thickness (t), the length (L), the cross-
sectional area (A), the Young’s modulus (E), and the flexural and torsional stiffness (EI) and (GJ), 
respectively. The stiffness matrix of the truss element modified to include the damage coefficient is given 
by Equation (5), where C = cos  and S = sin . The truss element is shown in Figure 1. The numerical 
approach was applied to simple steel truss structures, see Figure 2, with different levels of damage. 
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In this paper, changes in these quantities are lumped into a damage coefficient di, which is used to 
multiply the stiffness matrix of a particular element. The coefficients di constitute the design variables for 
the damage assessment problem and vary from 0 (undamaged element) to 1 (completely damaged 
element). The values of the coefficients di give the location and the extent of damage in the structure. 
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Figure 1: Truss element. 
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a) Nine bar truss. b) Fifteen bar truss. 

Figure 2: Investigated steel truss structures (dimensions in meters). 
 

If the measured and analytically determined static displacements or vibration modes are denoted by 
Ym and Ya, respectively, the optimization problem can be formulated as determining the vector of design 
variables di that minimize the scalar objective function representing the difference between the analytical 
and experimental response, as presented in Equation (6), where i represents the degree of freedom and j 
denotes a static loading condition or a particular vibration mode. 
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One important advantage of this approach is that the complete set of modes or displacements is not 

needed since the objective function involves only the difference between components of those vectors. 
Some of the components may be neglected according to its importance in the behaviour of the structure. 
In this paper, for damage assessment purposes, only the vertical displacements were used. They are 
dominant and easier to measure. The other components are relatively small and neglecting them in the 
objective function does not affect the process of damage detection. The approach still works and becomes 
more realistic since in large structures only few dominant displacements can be obtained accurately. Also 
in the cases where eigenmodes were used for damage assessment purpose, only the first four modes and 
the respective eigenvalues (natural frequencies) were used in the objective function. 

The objective function presented in Equation (6) was minimized with two global optimization 
techniques: Differential Evolution (DE) and the Ant Colony Optimization (ACO). These methods are 
described briefly in the next section. 

3 OPTIMIZATION TECHNIQUES 

3.1 Differential Evolution (DE) 
The Differential Evolution (DE) was proposed by Storn and Price [4] as an algorithm to solve global 

optimization problems of continuous variables. The main idea behind DE is how possible solutions taken 
from the population of individuals are set, recombined and chosen to evolve the population to the next 
generation. In a population of individuals, a fixed number of vectors are randomly initialized, and then 
evolved over the optimization task to explore the design space and hopefully to locate the optimum of the 
objective function. At each iteration, new vectors are generated by the combination of vectors randomly 
chosen from the current population. 

This operation is called “mutation” and a mutant population is created. The outcoming vectors are 
then mixed with a predetermined target vector. This operation is called “crossover” or “recombination” 
and produces a “trial vector”. Finally, the “trial vector” is accepted for the next generation if it yields a 
reduction in the value of the objective function. This last operation is referred to as “selection”. 
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As can be seen, the basic algorithm preserves some common aspects of the traditional simple Genetic 
Algorithm (GA), specially the nomenclature of selection, crossover and mutation. A population of 
individuals can be expressed as a matrix given by Equation (7), where i is the number of individuals of 
the population and j is the number of design variables. 
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As described before, the “mutation” operator adds the weighted difference between two individuals to 

a third individual (base vector). There are several ways to mutate a variable and the equation below 
shows a possible mutation scheme, among others. 
 

321 rrri xxFxv  (8) 
 

In Equation (8), i is the mutant vector, xr1, xr2 and xr3 are random integer indexes and mutually 
different, F is a real constant factor which controls the amplification of the differential variation and xbest 
is the best individual of the current population. The next operation is “crossover”. Each mutant vector is 
combined with a target vector xi. This operation is performed by swapping the contents of the mutant 
vector with the correspondent component of the target vector based on a crossover probability (CR). The 
resulting vector is denominated “trial vector”. 

At the sequence of the DE algorithm, the selection operator decides whether or not the new vector 
xtrial should become a member of the next generation. This is decided by the objective function value of 
all new individuals f(xtrial) which are compared with the one of the target vector f(xtarget). If there is an 
improvement, xtrial is selected to be part of the next generation, otherwise, xtarget is kept. According to 
Storn and Price [5] it is recommended that the population has a size of 10 times the number of design 
variables, the crossover probability, CR, usually is chosen in the range [0,1] and the weight factor F is 
usually chosen in the interval [0,2]. In this paper CR was set as 0.8 and F was set as 0.9. 

3.2 Ant Colony Optimization (ACO) 
The Ant Colony Optimization method was proposed by Dorigo [6]. The native ants are capable of 

finding the shortest path from a food source to the nest without using visual cues. Also, they are capable 
of adapting to changes in the environment, for example finding a new shortest path once the old one is no 
longer feasible due to a new obstacle. 

It is well-known that the main means used by ants to form and maintain the line is a pheromone trail. 
Ants deposit a certain amount of pheromone while walking, and each ant probabilistically prefers to 
follow a direction rich in pheromone rather than a poorer one. This elementary behaviour of real ants can 
be used to explain how they can find the shortest path which reconnects a broken line after the sudden 
appearance of an unexpected obstacle has interrupted the initial path. 

In fact, once the obstacle has appeared, those ants which are just in front of the obstacle cannot 
continue to follow the pheromone trail and therefore they have to choose between turning right or left. In 
this situation one can expect half the ants to choose to turn right and the other half to turn left. 

It is interesting to note that those ants which choose, by chance, the shorter path around the obstacle 
will more rapidly reconstitute the interrupted pheromone trail compared to those which choose the longer 
path. Hence, the shorter path will receive a higher amount of pheromone in the time unit and this will in 
turn cause a higher number of ants to choose the shorter path. Due to this positive feedback process, very 
soon all the ants will choose the shorter path. 
 

Genasil F. dos Santos et al.



357

The ACO was developed initially for combinatorial optimization only. Particularly good results were 
obtained in the solution of the Problem of the Traveling Salesman [7]. The damage assessment problem 
deals with continuous variables. In this work an extension of the ACO algorithm applied to continuous 
variables is used [8-9]. A population of ants can be expressed in a matrix, where the rows represent the 
number of design variables in the problem. Each ant is referred as an individual and has numerical values 
associated with it. The path of each ant is related to the value of the objective function. 

The pheromone trail corresponds to an amount of pheromone laid on the path by each ant. For the i-th 
dimension of the design space the pheromone trail, i, is given by Equation (9), where xi* is the i-th 
coordinate of the best point found by the optimization task within the design space until the current 
iteration, i is an index related to the aggregation of the population around the current minimum for the i-
th coordinate of the design space and is given by Equation (10), where z is a vector corresponding to the 
i-th column of the population matrix and z is the mean value of the vector z. 
 

2

2*

2)( i

ixx

i ex  
(9) 

 
popn

j
j

pop
i zz

n 11
1

 
(10) 

 
The updating process of the values of each design variable for all individuals is based on the 

probability distribution given by Equation (9). Also it can be seen that the concentration of pheromone 
increases in the area of the candidate to the optimum. This approach (also called as positive update) 
reinforces the probability of the choices that lead to good solutions. However, for avoiding premature 
convergence, negative update procedures are not discarded. 

A simple method to perform negative update is by dissolving certain the amount of pheromone in the 
path. The idea of this scheme is to decrease the amount of pheromone by changing the current standard 
deviation (see Equation 10) for each variable. The dissolving rate affects the exploration capabilities, and 
consequently, the convergence of the algorithm. In the examples presented in this paper the same 
parameters were used in the ACO algorithm. In this investigation, the population size and the number of 
iterations considered for each example were equal to ten times the number of design variables. 

4 DISCUSSION OF RESULTS 

The methods described in the previous section were implemented using the MATLAB Code obtained 
from [10-11]. A finite element program [12] was used for response analysis. In this work the 
experimental results were synthetic which means that they were obtained from the analytical model 
(finite element model) considering the parameters corresponding to the damaged structure. Also noise 
that occurs in the experimental process was not considered. The flow between the various processors was 
controlled by a MATLAB main program. 

This technique was applied to the steel trusses, see Figure 2 (a) and (b) for damage detection. For all 
the members in both structures the cross-sectional area is 12 cm² and the Young’s Modulus 207 GPa. For 
the nine bar truss, Figure 2(a), the first four eigenmodes were used as experimental results for each 
damage simulation. For the fifteen bar truss, Figure 2(b) the measured response were the vertical static 
displacements obtained with the application of four vertical static loads of 10 kN on nodes 3, 5, 7 and 9. 

The two optimizations techniques (DE and ACO) were used in the process of damage detection. 
Different levels of damage were simulated, from 10% until 90%, in both structures. Tables 1 and 2 show 
the results comparing both numeric techniques. In the nine bar truss, Figure 2(a), member 4 was damaged 
whereas in the fifteen bar truss, Figure 2(b), member 2 was damaged. 
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Table 1: Results for the nine bar steel truss. 
10% damage 30% damage 50% damage 70% damage 90% damage Element 
DE ACO DE ACO DE ACO DE ACO DE ACO 

1 0.0005 0.0000 0.0003 0.0000 0.0000 0.0000 0.0010 0.0000 0.0028 0.0013 
2 0.0000 0.0000 0.0000 0.0000 0.0005 0.0000 0.0000 0.0000 0.0087 0.0001 
3 0.0009 0.0003 0.0012 0.0002 0.0003 0.0001 0.0001 0 0.0062 0.0005 
4 0.1008 0.0998 0.3002 0.2997 0.4958 0.5000 0.7010 0.7000 0.9018 0.8999 
5 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000 0.0007 0.0000 0.0006 0.0000 
6 0.0001 0.0000 0.0006 0.0002 0.0000 0.0001 0.0035 0.0002 0.0030 0.0008 
7 0.0001 0.0001 0.0002 0.0002 0.0093 0.0000 0.0005 0.0001 0.0035 0.0000 
8 0.0001 0.0004 0.0000 0.0003 0.0009 0.0002 0.0001 0.0001 0.0028 0.0003 
9 0.0001 0.0000 0.0000 0.0000 0.0007 0.0000 0.0002 0.0000 0.0004 0.0001 

Objective 
Function 7.7E-15 1.3E-5 2.9E-15 3.5E-6 8.8E-13 1.4-E5 4.0E-14 3.2E-6 4.5E-13 7.3E-4 

 
Table 2: Results for the fifteen bar steel truss. 

10% damage 30% damage 50% damage 70% damage 90% damage Element 
DE ACO DE ACO DE ACO DE ACO DE ACO 

1 0.0007 0.0000 0.0002 0.0000 0.0002 0.0000 0.0005 0.0000 0.0067 0.0000 
2 0.0945 0.0939 0.2994 0.2859 0.4993 0.5055 0.6981 0.6892 0.8998 0.8999 
3 0.0087 0.0026 0.0004 0.0259 0.0004 0.0000 0.0091 0.0329 0.0091 0.0285 
4 0.0006 0.0000 0.0000 0.0213 0.0001 0.0000 0.0137 0.0200 0.0007 0.0040 
5 0.0005 0.0000 0.0001 0.0000 0.0008 0.0000 0.0000 0.0000 0.0016 0.0010 
6 0.0002 0.0326 0.0006 0.0416 0.0002 0.0422 0.0006 0.0418 0.0184 0.0154 
7 0.0037 0.0013 0.0000 0.0199 0.0002 0.0152 0.0003 0.0263 0.0000 0.0086 
8 0.0149 0.0000 0.0019 0.0000 0.0262 0.0000 0.0470 0.0003 0.0029 0.0019 
9 0.0001 0.0000 0.0001 0.0000 0.0002 0.0000 0.0044 0.0000 0.0002 0.0010 
10 0.0000 0.0001 0.0000 0.0000 0.0005 0.0000 0.0013 0.0000 0.0042 0.0004 
11 0.0103 0.0002 0.0001 0.1313 0.0000 0.0055 0.0163 0.2449 0.0185 0.0109 
12 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0027 0.0000 0.0003 0.0001 
13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0014 0.0000 0.0000 0.0001 
14 0.0007 0.0000 0.0000 0.0000 0.0010 0.0000 0.0000 0.0001 0.0000 0.0002 
15 0.0001 0.0000 0.0000 0.0233 0.0001 0.0006 0.0067 0.1018 0.0095 0.0000 

Objective 
Function 2.2E-11 1.3E-8 8.3E-13 8.3E-9 6.1E-12 1.2E-8 3.1E-10 7.7E-9 4.1E-10 1.2E-8 

 
It must be emphasized that in general, both methods performed very well. The location and level of 

damaged in all cases were detected correctly. The Differential Evolution was more efficient. The results 
were more accurate with less computational effort. In some cases the Ant Colony Optimization detected 
damage in good members as occurred in member 11 of the fifteen bar truss for some cases of damage. 

5 CONCLUSIONS 

The paper presented an approach for damage detection using a system identification technique that 
results in a nonlinear optimization problem. Two global optimization methods were used: Differential 
Evolution (DE) and Ant Colony Optimization (ACO). Reduced set of eigenmodes and static 
displacements were used as experimental data in the identification procedure. The methods were applied 
to simple steel truss structures with different levels of damage and presented promising results. Both 
optimization techniques performed well identifying the location and extent of damage very clearly. The 
Differential Evolution method was more efficient presenting more accurate results with less 
computational effort. An extension of this work is to study the application of the present approach to 
large truss structures and to other types of structures such as beams, plates and shells. 
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