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Abstract. The increasing slenderness of structural frames makes them more susceptible to vibration and 
buckling problems. The present work studies the free and forced nonlinear vibrations of steel frames with 
semi-rigid connections. Special attention is given to the influence of static pre-load on the natural 
frequencies and mode shapes, nonlinear frequency-amplitude relations, and resonance curves. These 
results are obtained using a nonlinear finite element program for static and dynamic analysis of steel 
frames. Two structural systems with important practical applications are analyzed, namely: a shallow 
arch and a pitched-roof steel frame. The results show the importance of the static pre-load and the 
stiffness of the semi-rigid connection on the buckling and vibration characteristics of these structures. 

1 INTRODUCTION 

During the last ten years, studies and research have concentrated on the vibration problems of 
structures subjected to dynamic loads. This has brought significant advance in the civil construction 
industry, where new techniques and materials have been either developed or improved. Maybe the largest 
contributor to this advance is the use of more precise numerical computational tools, whose models 
permit realistic simulation and resolution of structural problems. Today, with all these advances, it is 
possible to design more streamline and flexible buildings. However, this makes them more susceptible to 
the effects of dynamic actions, creating ever-growing problems. This can be observed in the technical 
literature where failures involving from localized damage to total structural collapse are described. There 
are also cases of vibration-related discomfort experienced by users, even when there is no structural 
damage. Because of this, nonlinear dynamic analysis of slender steel structures is ever more relevant. 

In most reports on linear and nonlinear structural vibrations, it is assumed that the system is free of 
loading and that a dynamic load is suddenly applied for a given time duration. This may lead to erroneous 
results when slender structures susceptible to buckling are investigated. Simitses [1] discussed the effects 
of static preloading on the dynamic stability of structures. The effect of static pre-load on the structure’s 
dynamics has also been studied by Wu and Thompson [2], and Zeinoddini et al. [3], among others. The 
interplay between buckling and vibration has been the subject of some previous papers [3-6]. These 
studies show that compressive stress states decrease the structure’s natural frequencies and may even 
change the mode shapes associated with the lowest natural frequencies [5]. They also decrease the 
effective stiffness and consequently increase the vibration amplitudes, which may weaken or even damage 
the structure. Finally, shifting the natural frequencies to a lower frequency range may increase resonance 



362

Andréa R.D. Silva et al. 

problems due to environmental loads. Solutions to these vibration problems usually require the use of 
costly control systems or changes in the structural design [7]. 

Transient linear and nonlinear analysis of beams and frames with semi-rigid connections, as well as 
the study of vibratory problems associated with these structural systems, can also be found in publications 
by Chan and Chui [8], Sophianopoulos [9] and Sekulovic et al. [10]. 

The aim of the present work is to conduct, using the nonlinear finite element program CS-ASA 
(Computational System for Advanced Structural Analysis, Silva [11]), a dynamic analysis of steel frames 
and to study the influence of second-order effects generated by large displacements and rotations, 
connection flexibility, and pre-stress states on the nonlinear response of slender steel structures. 

2 THE FREE VIBRATION PROBLEM 

The geometric nonlinear finite element formulation for frames with rigid connections implemented in 
the CS-ASA is based on work by Yang and Kuo [12]. The consideration of semi-rigid connections is 
based on the formulations proposed by Chan and Chui [8] and Sekulovic et al. [10]. 

In the finite element method context, the equilibrium of any structural system can be expressed as: 
 

 ( )
i r= λF U F  (1) 

 

where Fi is the internal forces vector, function of the generalized displacement vector U, λ is a load 
factor, and Fr is a fixed reference vector defining the direction and distribution of the applied loads. 

To obtain the nonlinear equilibrium path of a structure, an incremental technique for the response is 
used to solve the equation system (1). This procedure basically consists of calculating a sequence of 
incremental displacements, ΔUi, that correspond to a sequence of given load increments, Δλi. However, 
as Fi is a nonlinear function of U, the estimated solution for the problem (predicted solution: Δλ0, ΔU0) 
for each load step normally does not satisfy (1). Consequently, a residual force vector g is defined. If this 
residual force vector does not satisfy the convergence criteria, a new estimate for U is obtained. 

The vibration frequency analysis is crucial in the stability analysis of structural systems with strongly 
nonlinear equilibrium paths, and the dynamic stability criterion can be used to define the type of the 
equilibrium configuration. So, the vibration frequencies and the corresponding modes of vibration in a 
structure can be obtained by solving the following eigenvalue problem: 
 

 ( )2− ω =K M 0φφφφ  (2) 
 

where K is the tangent stiffness matrix of the structural system, M is the mass matrix, ω is the natural 
frequency, and φφφφ is the vibration mode vector. The influence of static preloading and semi-rigid 
connections on structural system vibration modes and natural frequencies is studied here. The static 
preloading effect is related with the presence of axial force on bars and its inclusion is made considering 
the geometric stiffness matrix as part of K in (2); the semi-rigid connections influence is included 
evaluating the joint stiffness at the assumed load level and consequently changing the linear stiffness 
matrix. However, as the geometric nonlinearity and the connection flexibility effects are considered, the 
solution to the equation (2) cannot be obtained directly. Table 1 illustrates the step-by-step numerical 
procedures for solving the static nonlinear problem and, subsequently, calculating the natural frequencies 
and vibration modes of the loaded structure. This algorithm illustrates that for each load step the equation 
(2) is solved considering the structural stiffness change due the initial stress (preloading). 

3 NONLINEAR TRANSIENT ANALYSIS 

The nonlinear time response of the structure can be obtained by solving the following set of discrete 
equations of motion:  

 ( ) ( )
i rt+ + = λMU CU F U F  (3) 
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Table 1: Numerical strategy for free vibration analysis of pre-loaded frames. 

1. Input the material and geometric properties of the frame 
2. Obtain the reference force vector Fr 
3. Displacement and load parameter in the actual equilibrium configuration: tU and tλ 
4. INCREMENTAL TANGENT SOLUTION: Δλ0 and ΔU0 

4a. Calculate the tangent stiffness matrix K 
4b. Solve: δUr = K-1Fr 
4c. Define Δλ0 with a determined strategy for the load increment [11]  
4d. Calculate: ΔU0 = Δλ0δUr  
4e. Update the variables in the new equilibrium configuration t + Δt:  

(t+Δt)λ = tλ + Δλ0 and (t+Δt)U = tU + ΔU0 
5. NEWTON-RAPHSON ITERATION: k = 1, 2,3,... 

5a. Calculate the internal forces vector: ( ) ( ) ( )1 1tt t k k
i i

+Δ − −= + ΔF F K U  

5b. Calculate the unbalanced forces vector: ( ) ( ) ( ) ( ) ( )1 1 1k t t k t t k
r i

− +Δ − +Δ −= λ −g F F  

5c. Verify the convergence: ( ) ( ) ( )( )11 t t kk
r

+Δ −− ≤ ξλ Fg , with ξ being the tolerance factor. 

YES: Stop the iteration cycle and go to item 5h 
5d. Obtain δλk using an iteration strategy [11]  

5e. Determine k k k k
g rδ = δ + δλ δU U U , with ( ) ( )1 1 1k k k

g
− − −δ = −U K g  and ( )1 1k k

r r
− −δ =U K F  

5f. Update the load parameters, λ, and the nodal displacement vector, U: 
a) Increments: Δλk = Δλ(k-1) + δλk and ΔUk = ΔU(k-1) + δU k 
b) Totals: (t+Δt)λk = tλ + Δλk and (t+Δt)U k = tU + ΔUk 

5g. Return to step 5 
5h. Determine the natural frequencies and the associated vibrations modes: 

a) Update the tangent stiffness matrix K and the mass matrix M 
b) Decompose M by the the Cholesky method: M = STS and obtain A = (S-1)TKS-1 
c) Solve the eigenvalue problem AX = λX by using the Jacobi Method, obtaining the 

eigenvalues (ω2) and the eigenvectors (vibration modes) 
6. CONSIDER NEW LOAD INCREMENT AND RETURN TO STEP 4 

 
where M and C are the mass and viscous damping matrices, respectively, and Fi is the internal force 
vector that depends on the displacement vector U of the system, U  and U  are the velocity and 
acceleration vectors, respectively, and λ(t)Fr is the external excitation vector. 

The solution of the nonlinear dynamic system (3) can be obtained through a time integration 
algorithm together with adaptive strategies for the automatic increment of the time step. The numerical 
methodology used here is presented in table 2. Details of the nonlinear dynamic formulation as well as 
the computational program are found in Silva [11]. 

3.1 Nonlinear Vibration Analysis 

The nonlinear frequency-amplitude relation provides fundamental information on the nonlinear 
vibration analysis of any structural system, and it gives a good indication of the type (hardening or 
softening) and degree of nonlinearity of the system. Here the methodology proposed by Nandakumar and 
Chatterjee [13] is used to obtain this relation using the finite element method. First, the nonlinear 
equations of motion are numerically integrated (table 2), and the time response of the slightly damped 
system is obtained for a chosen node. Then, the maximum amplitude and corresponding period between 
two consecutive positive peaks are computed at each cycle. Consider two successive peaks at times t(i) 
and t(i + 1) (see figure 1). Let their average value be d1m and let the trough between these two positive 
peaks be d2. Then, the amplitude can be defined by: 
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 ( ) ( )( )1 21 2i m i id d d= +  (4) 

and the frequency as fi = 1/Ti, with Ti = t(i+1) – t(i). The resulting amplitude and frequency values are 
plotted to give the frequency-amplitude relation. To obtain the peak amplitudes with the necessary 
accuracy, a small time step must be imposed in the integration process. In addition, a large number of 
elements are necessary to describe accurately the large amplitude response of the structure. 
 

Table 2: Numerical strategy for nonlinear transient analysis. 

1. Input the material and geometric properties of the frame, and obtain the force vector Fr 
2. Start the initial displacement, velocity  and acceleration vectors, 0 U , 0 U  and 0 U  
3. FOR EACH TIME STEP t + Δt 

3a. Derive the tangent stiffness, mass and damping matrices: K, M, and C 
3b. Using Newmark parameters β and γ, calculate the constants: 

( )2
0 1a t= βΔ ; ( )1a t= γ βΔ ; ( )2 1a t= βΔ ; ( )3 1 12a = −β ; 4 1a = γ β − ; 

( )( )5 12a t= Δ γ −β ; 6 0a a= ; 7 2a a= − ; 8 3a a= − ; ( )9 1a t= Δ − γ ; 10a t= αΔ  

3c. Form the effective stiffness matrix: 0 1
ˆ a a= + +K K M C  

3d. Calculate: ( ) ( ) ( )2 3 4 5
ˆ t t t t tt t r ia a a a+Δ= λ + + + + −F F M U U C U U F  

3e. Solve for displacement increments: ˆ ˆΔ =K U F  
4. NEWTON-RAPHSON ITERATION: k = 1, 2,3,... 

4a. Evaluate the approximation of the acceleration, velocities and displacements: 
( )

0 2 3
t t k k t ta a a+Δ = Δ − −U U U U ; ( )

1 4 5
t t k k t ta a a+Δ = Δ − −U U U U ; ( ) +t t k t k+Δ = ΔU U U  

4b. Update the geometry of the frame 

4c. Evaluate the internal forces vector: ( )t t k t k
i i

+Δ = + ΔF F K U  

4d. Form: ( ) ( ) ( ) ( ) ( ) ( )( )1t t k t t k t t k t t kt t
r i

+Δ + +Δ +Δ +Δ+Δ= λ − + +R F M U C U F   

4e. Solve for the corrected displacement increments 
( ) ( ) ( )1 1ˆ k t t k+ +Δ +δ =K U R  

4f. Evaluate the corrected displacement increments: ( ) ( )1 1k k k+ +Δ = Δ δU U U+  
4g. Check the convergence of the iteration process: 

( ) ( )1 1k t k+ +Δ Δ ≤ ξU U U+ , where ξ is a tolerance factor         NO: Go to 4 

4h. Calculate the acceleration, velocities and displacements at time t + Δt 
( ) ( ) ( )1 1

0 2 3
t t k k t ta a a+Δ + += Δ − −U U U U ; ( ) ( ) ( )1 1

1 4 5
t t k k t ta a a+Δ + += Δ − −U U U U  

( ) ( ) ( )1 1+t t k t k+Δ + += ΔU U U  
5. FOR THE NEXT TIME STEP 

5a. Evaluate the internal forces vector: ( ) ( ) ( )1 1t t tk k
i i

+Δ + += + ΔF F K U  

5b. Select a new time step Δt (adaptative strategy) 

3.2 Resonance Analysis 

Low-dimensional numerical models employ relatively easy techniques for obtaining nonlinear 
resonance curves. In contrast, it is computationally difficult to obtain these curves for structural systems 
with a large number of degrees of freedom. Here, a simple repetitive procedure coupled with the 
integration method is implemented, which consists in giving constant excitation-frequency increments 
ΔΩ and, for each incremental step, integrate the differential equations of motion during N harmonic 
excitation cycles. The response of the initial cycles associated with the short transient response is 
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dismissed, and the maximum amplitude of the steady-state solution is plotted as a function of the forcing 
frequency. Of course, this brute force method is unable to obtain unstable branches of resonance curves 
or all co-existing stable solutions. 
 

Time (s)

Amplitude (d)

( )
( ) ( )( )1 i 1 i 1

1m i

d d
d

2
+

+
=

( )it ( )i+1t

( )1 i 1d
+

( )2 id

( )1 id

Ti

 
Figure 1: Procedure for obtaining the displacements di and the frequency fi. 

4 NUMERICAL EXAMPLES 

4.1 Shallow arch 

Slender arches are structures that may present, depending on the support conditions and the type and 
intensity of loading, a highly nonlinear structural behavior. The dynamic response of these arches has 
been extensively analyzed due to their practical applications. This subsection analyzes the sinusoidal arch 
under vertical distributed load P presented in figure 2 [14]. 

 

L = 1000 mm

z  = 20 mm vSc Sc0
h = 20 mm

h

Cross section:
Young's modulus: 210 GPa 

Density: 7.8 kNs   /m 
2 4P (N/mm)

 
Figure 2: Arch with semi-rigid joints: geometry and loading. 

 
Figure 3a shows the arch equilibrium paths for different support rotation stiffness Sc. For more 

flexible connections the presence of two limits points in the equilibrium path is observed which 
disappears as the stiffness of the supports increase. The curve obtained for the simply supported arch, 
Sc = 0, is compared with the analytical solution provided by Bergan [14]. 

Figure 3b shows the nonlinear relation between the load P and the lowest natural frequency 
considering increasing support stiffness. The curves show not only the influence of static pre-loading in 
the natural frequencies, but also indicate, in accordance with the dynamic instability criterion, the stable 
and unstable equilibrium configurations along of the equilibrium paths. Based on this criterion, the 
unstable parts (ω2 < 0) are located between the points A1, A2, B1, B2, C1 and C2.  

Figure 4a illustrates the nonlinear relation between the frequency and the free vibration amplitude of 
the arch. To obtain such a response, a damping rate equal to 0.01 and a constant time step equal to 10-5 is 
considered. Three different support conditions are studied: pinned (Sc = 0), perfectly rigid (Sc → ) and 
semi-rigid (Sc = 10 EI/L). In all three situations, the arch displays initially hardening behavior, i.e., the 
frequency increases with increasing vibration amplitudes. However, for large vibration amplitudes a 
softening behavior is observed which is more pronounced for the pinned arch. The natural frequencies, in 
Hz, for each arch (rigid, semi-rigid and pinned) is indicated by a dashed line. The dynamic response of 
the pinned arch under a uniformly distributed harmonic excitation, P = Ap sin(Ωt), is investigated next. 
Figure 4b shows the variation of the maximum and minimum amplitude of the steady-state response, v/z0, 
as a function of the forcing frequency parameter Ω/ωa (ωa = 238.4 rad/s) for different amplitudes of the 
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harmonic excitation, Ap/h. When the excitation magnitude increases, the resonance peaks move sharply to 
the lower frequency range, indicating a strong softening behavior in agreement with the frequency-
amplitude relation shown in figure 4a. This behavior is also compatible with the type of nonlinearity 
observed in the system’s static solution. As is typical of nonlinear systems, the resonance curve begins to 
bend at Ap/h = 0.4 in a region of low frequencies, which produces more than one permanent solution for 
the same frequency value. When the magnitude of excitation reaches Ap/h = 0.5, the amplitude increases 
considerably in the low frequency region up to the point where the arch loses stability and inverts its 
concavity. 
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(a) Nonlinear equilibrium paths (b) Natural frequency-load relation 

Figure 3: Static analysis and influence of static pre-load on the lowest natural frequency. 
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(a) Frequency-amplitude relation (b) Resonance curves 

Figure 4: Nonlinear vibration and resonance analysis for selected values of the connection stiffness Sc. 

4.2 Pitched-roof steel frame 

The numerical strategy developed is now applied to the analysis of a pitched-roof frame with beam-
column flexible joints, as shown in figure 5. Twenty finite elements are used here to model the structure. 
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Figure 5: Pitched-roof frame: geometry and loading. 

 
Figure 6a shows the nonlinear equilibrium paths for increasing values of the joint stiffness Sc. The 

nonlinear relation between the load and the natural frequencies for different values of joint stiffness is 
given in figure 6b. The applied load is non-dimensionalized by the Euler load Pe = π2EI/L2, and the 
frequencies are non-dimensionalized by the lowest free vibration frequency of the unloaded frame with 
rigid connections, ω0 = 23.912 rad/s. The non-linear paths display a limit load (points A, B, C and D) as 
shown in figure 6a. Figure 6b shows the variation of the lowest natural frequency with the applied load. 
The almost linear relation between the square of the frequency of the pre-loaded structure and the applied 
load can be used to evaluate the buckling load through at least two experimental values of the lowest 
frequency for two small load levels. Finally, figure 6c shows the frequency-amplitude relation of the 
pitched-roof for three selected values of the beam-column joints stiffness. The relation is almost linear for 
small-to-medium amplitude oscillations and of the softening type when very large vibration amplitudes 
occur, which is outside the range of practical applications. 
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Figure 6: Static and vibration analysis of the pitched-roof steel frame. 

5 CONCLUSION 

The results presented in this paper indicate that the precise evaluation of the connection stiffness, a 
key point in the design of steel structures, is essential for the calculation of critical conditions. This is 
particularly important for practical application where damage usually occurs at the connections, 
decreasing their stiffness and radically changing the nonlinear behavior of the frame. The results also 
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indicate that the loss of stiffness of a connection during the service life of the structure may significantly 
affect the structural behavior under both static and dynamic loads. This is in agreement with the literature 
describing structural failures due to support deterioration. In some cases, a slow decrease in the joint 
stiffness Sc value can change the overall stiffness of the structure and its dynamic characteristics, and this 
can only be detected and quantified by detailed nonlinear behavior analyses of the structure. Finally, the 
results also showed the influence of the static pre-loading on the natural frequencies and the nonlinear 
frequency-amplitude relation of the analyzed structural systems. 
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