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Abstract. In off-shore plataform, petroleum from the oil well may have to be heated up so that its density 
decrease, making easier the pumping of petrolium along pipelines. Due to temperature increase, such 
pipelines may be under thermal dilatation and, consequently, under high compressive thermal loading. 
There is a great difficult in finding the collapse load of such submarine pipeline. An analytical method is 
presented in this paper for the determination of the collapse load of pressurized pipelines extended over 
large free spans. The collapse load is determined from a closed solution equation. Results of the 
presented formulation are compared with sophisticated finite element analyses. For the determination of 
the collapse load of pressurized freespan pipelines under compression, non-linear finite element analysis 
requires a lot of computer processing while the present formulation takes practically no time to assess a 
good approximation for the collapse load. 

NOTATION 
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1. INTRODUCTION  

Submarine pipelines are often laid on relatively rough sea-bottom terrains and, consequently, may be 
supported by soil only intermittently, without intermediate support. Such spans are identified as 
“freespans”. The scope of this paper is to predict the behavior of freespan pipelines under compressive 
loads originating from effects such as temperature differentials. The paper deals exclusively with free 
span pipelines under compressive load combined with internal pressure. The compressive load, P, is 
assumed to be applied at the ends of the pipe segment and to be collinear with a line through the end 
supports of the pipe segment. Consequently, the load is considered to act along the chord connecting the 
two ends of the freespan segment, without change in the load direction. The collapse mechanics of a 
segment of a free span pipeline (FSP) under compressive load is not necessarily the same as for a buried 
pipeline (BP). Adequate support around a BP may prevent it from buckling globally. Assuming a FSP 
under compression deforms as shown in Fig.-1, the collapse mode of a FSP under compression, depends 
upon the length of the free span, and will be different than for local wrinkle formation typically observed 
in short segments of BPs. For short free span lengths, the collapse mode of the FSP might be similar to 
the local wrinkle formation mode observed in BPs. For long free spans, the collapse mode might be 
comparable to the global buckling collapse mode observed in a structural column. 

 

2. THE PIPE AND THE MODEL 

Assuming small deformation theory, a long FSP, if ideally straight, elastic, and isotropic, loaded 
along the central axis, should behave like any long structural member under compression. The first model 
that comes to our mind is the buckling of the Euler’s column. For all practical purposes, the prescribed 
Euler’s collapse load in Eq.(1) for a pinned-end column is an upper limit of compressive loading for an 
ideal FSP.  
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To determine a more realistic behavior of FSPs under compressive load it is necessary to admit the 
existence of initial imperfections, the possibility of inelastic behavior, and the mobilization of fully plastic 
moment capacity of the pipe section. Let us consider the effect of initial imperfection and plastic 
deformations, using the mechanical model shown in Fig.-2 [6]. Subsequently, it is possible to examine for 
the effects of initial imperfection and inelastic material behavior on the buckling behavior. The 
mathematical model consists of two rigid arms pinned together at the span center-line at C. On the ends 
(A and B) they are pinned too, as in Fig.-3. A vertical spring, with stiffness K, is attached at C. Applying 
an increasing horizontal axial force P at point A through the centroidal cross-sectional axis, with  = 0, 
will make P reaches its critical load, Pcr. 

At this critical load, when buckling takes oplace, the model forms a mechanism in which point C 
displaces laterally through a distance , and the arm rotates  - see Fig.-2b.  Prior to instability, the force 
in the spring, Ps = 0. As soon as the instability takes place, Ps=Kδ - with K being the spring constant. 
From moment equilibrium of the arm from A to C, about C, for Fig.-2b, we can write for small angles 
 

Figure-1: Freespan pipeline under compressive load and initial imperfection δ0. 
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In Fig.-2a, to simulate the Euler’s buckling load, the lateral defection  will take place abruptly when the 
critical load reaches the Euler’s load.  Substituting K   for Ps in Eq. (2) and equating Pcr = PE yelds 
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Figure-2: (a) An elementary buckling model and 
(b) free-body diagram. 

Figure-3: The mechanical model with initial 
imperfection. 

 
Up to now, the pre-buckling shape is a straight line, however, by now let’s consider the existence of an 
initial imperfection o  0 in Fig.-3. Note that small initial imperfections will be amplified by the axial 
force. The model of the FSP with an initial imperfection o is in Fig.-3a. o exists initially, for P = 0 and 
Ps = 0. For P  0, the incremental displacement at the centerline increases by the amount  due to the 
rotation of the arms – see Fig.-3a. The total displacement, due to the arm rotation, , becomes tot = 0 +  
- Fig.-3b. The moment equilibrium of arm A-C, about C, for Fig.-3b may be expressed by Eq.(4).  
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   and  tot = o +  (4) 

As PS = K   and δ = δtot – δ0, and using Eq.(3) for K; Eq.(4) can be transformed into the following 
equation 
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          The model for the FSP with an initial o will result in an increase in bending moment at the center 
of the span as P and tot increase. However, P in Eq. (5) indicates that the compressive load for the model 
of the imperfect column (or FSP) will never reach the Euler’s load, PE, but approaches PE asymptotically. 
In addition, the maximum bending moment that can arise at the central section cannot exceed that 
associated with the fully plastic condition for the pipe. At the central section M = P tot and the collapse 
load for can be determined by the load P that produces the moment which, when combined with the axial 
effects, mobilizes the fully plastic capacity of the pipe section ( M pc ). To compute the full plastic 
capacity of the pipe it is necessary a yield criterion.  

Pressurized pipes are subjected to hoop and longitudinal stresses due to axial forces and transverse 
bending moments acting on the pipe cross section. For a thin-walled pipe, the hoop stress is considered 
constant and stresses other than hoop and longitudinal may be neglected. The longitudinal stress l and 
the hoop stress  are identified as the principal stresses 1 and 2, respectively. Using the Von-Mises-
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Hencky yield criterion (with y as the uniaxial yield strength) the maximum (and minimum) longitudinal 
stresses that the fully-plastic pipe cross section can sustain on the cross section may be calculated as 
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l
y y y

2 31
4

 (6) 

 
Eq.(6) is also valid for the ultimate stress ( u) in the place of the yielding stress ( y). Eq.(6) also 

identifies the two values of l that produce yielding for a specified . One corresponds to a compressive 
stress ( l = c), and the other, to a tensile stress ( l = t) - Fig 4. These values represent the maximum 
longitudinal compressive and maximum longitudinal tensile stresses that can be developed on the extreme 
fibers of the pipe cross-section for the given . If  = 0, then, for yielding, l= c= t= y.  If   0, then, 
the longitudinal stress l required to origin yield in tension is l = t which is different than that required 
in compression ( l  = c) (See Fig.4). Naming  =  / l  and  = l  / y, the Von-Mises-Hencky yield 
criterion is shown in Fig.-4 [4, 5]. From Fig.-4 and Eq.(6), the extreme values for l  and . For the 
determination of the fully-plastic capacity of the pipe section, we will assume that the stress-strain curve 
shows a well defined yield-stress plateau. The yield stress is an important engineering property in order to 
establish limits on the longitudinal and hoop stresses. The hoop stress   is given by 

 
pr

( R r )
 (7) 

 
The longitudinal stress acting on the pipe cross-section will depend on the axial force P and the 

bending moment. The limiting combinations of axial force and bending moment that develop the fully 
plastic capacity of the pipe section can be presented on an interaction diagram due to [2, 3]. In the 
following Section, the equations for the fully plastic moment capacity of the FSP pipe section will be 
derived. 

3. DEVELOPING THE FULLY PLASTIC MOMENT  

For a pipe, Fig.-5 shows the fully plastic stress distribution, accounting for the effects of stresses t  
and c [2]. As the pipe is under compressive load P applied at the pipe ends, the applied force is 
concentrically distributed on the pipe end sections with area Ao giving rise to an equivalent longitudinal 
uniform stress  = P/A0 at points A and B of Fig.-3, therefore  

2 2
0

P P
A R r

 (8) 

 
The stresses on the pipe section at the point of maximum moment are in Fig.-5 which is a fully plastic 

condition. At such a point, at the center of the span, we have a combination of stress from bending 
moment plus stress from axial loading. However, at the ends of the FSP (see Fig.-1 and 3); the force P 
acts in concert with the transverse force of Ps/2, and the combination of these loads must be equilibrated 
by the stress distribution of Fig.-5 at the centerline of the span. Therefore, at the point of maximum 
moment, the resultant longitudinal force given by the difference between the tensile force Ft = σtAt  and 
compressive force Fc = σcAc, in Fig.-5, must be in equilibrium with the external applied force P at the 
ends of the FSP.  The areas Ao, At, and Ac in Fig.-5 can be expressed as 
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From Eqs. (8) and (9) we can write the following longitudinal equilibrium equation 
 

2 2 2 2 2 2
c t c t
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2 2
 (10) 

 
The angle   can be calculated as a function of the stresses , t, and c of Eq.(10).  
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A search for P (that causes the stress distribution depicted in Fig.-5) is the same as a search for the 

equivalent stress  = P/Ao at the end of the FSP.  The arms ty  & cy of the respective forces Ft and Fc, 
such forces are at the centroids of the areas At and Ac in Fig.-5 - can be calculated as 

  
3 3

t 2 2
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Knowing At, Ac in Eq.(9); ty , cy in Eq.(12); and c and t in Eq.(6); the maximum plastic resisting 

moment M pc can be determined due to the load P (or stress σ) at the ends of the FSP. M pc is in 
equilibrium with the moment caused by the external force P and the eccentricity tot of Fig.-3 and Eq.(4), 
therefore 

pc c c t t c c c t t t tot o totM F y F y A y A y P A  (13) 
 
Using Eqs.(9), and (12) in Eq.(13), the expression for the maximum plastic bending moment is 
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Substituting into Eq.(14) the expression for the angle  from Eq.(11), we arrive at the following 

simplified version of Eq.(14) which is an expression for the maximum moment capacity for the FSP 
 

c3 3
pc t c

c t
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3
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4. THE PLASTIC COLLAPSE 

The limiting fully plastic moment for the FSP as expressed in Eq. (15) is an upper bound on the 
moment that can be developed before a plastic collapse buckling mechanism occurs.  For this mechanism 
to occur we note that M pc is a function of: (a) the maximum allowable longitudinal stresses, t and c; 
and (b) the equivalent applied stress σ (or load P, since  = P/A0) applied at the ends of the FSP. It is 
assumed that a structure with an initial imperfection and under increasing applied compressive load will 
deform until its fully plastic moment capacity is developed. The expression for maximum moment 
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capacity in Eq.(15) shows that for an increase in , there will be a decrease in M pc at center span. The 
formulation contained, herein, is based upon the argument that, to find the compressive collapse stress  
of a FSP, the effect of out-of-straightness must be taken into account. In reality, every structure has 
imperfections in geometry; but long structures like FSP laid on rough terrains, are more susceptible. The 
initial imperfection 0 is taken into account in Eq.(5). Such equation represents the behavior of the FSP in 
the elastic range until the fully plastic stress distribution of Fig.-5 is developed giving rise to Eq.(13). 
Note that Eq.(5), expressed in terms of Euler’s critical stress E = PE/A0, can give an expression for tot  as 

 

0 E

o tot o

PP 1
A A

  or o
E

tot

1  and, tot o E1  (16) 

Once yielding has fully developed, put M pc  from Eq. (15) into Eq.(13) to get an expression for tot as 
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Finally, by equating the right hand sides of Eq.(16) and Eq.(17), we arrive at the following 

transcendental equation for the determination of the collapse stress , which will be designated as    
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Developing Eq.(18) into a Taylor series and keeping only two terms of this series, one obtains:  
 

² C D 0  where 
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Figure 4: Von-Mises-Hencky Yelding Criterion Figure 5: Idealized fully plastic stress distribution 

         
The solution for the collapse stress  in Eq.(19) takes into consideration: (a) the geometric 

properties of the pipe section; (b) the initial imperfection for the particular FSP; (c) an upper bound limit 
represented by the Euler’s buckling load; (d) the fully-plastic stress distribution, (Fig.-5); (e) the fully-
plastic capacity depends on both the plasticity criterion and the hoop stress, which is a function of the 
applied internal pressure; (f) long structures, with initial imperfection, never reach the Euler’s Load 
(which is an upper bound limit); (g) the Euler’s load (or stress) which is a function of the modulus of 
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elasticity, pipe cross-section properties, and pipe length; and (h) the consideration of initial imperfection 
that is essential as it triggers the limiting fully-plastic moment capacity mechanism. 

5. COMPARISON TO FINITE ELEMENT ANALYSES 

       For obtaining collapse load for FSPs as a function of Li/D ratios; consider a typical pipeline for 
petroleum transportation with a range of free spans Li. The material and cross section properties of the 
pipeline are: (a) E= 200000MPa, (b) y =448MPa, (c) u =531MPa, (d) D = 323.85 mm, (e) t = 19.05 
mm, (f) d = 285.75 mm, (g) R = D/2 (161.925 mm), and r =d/2 (142.875 mm), and na internal pressure p 
= 10.2Mpa. The range of free span ratios (or Li/D) are shown in Table 1. For each FSP length Li, an initial 
imperfection oi is assumed. In this paper, oi is taken as the transversal deformation of the FSP such that 
the extreme fibers of the pipe cross section are just reaching the onset of yielding. Any other value of oi 
could be arbitrarily used. For simplification, and just to calculate an initial imperfection, it was assumed 
that on the onset of yielding t= c= y. Each Li determines different Euler’s load PE and stress E. The 
collapse loads of such FSPs without internal pressure are readily obtained and reported in Table-1. The 
analytical solutions are compared to Finite Element Analyses using ABAQUS [1]. It is also noticed that 
the analytical results reported in Table-1 consider the ultimate stress u in the place of yielding stress y 
into Eq.(6)  - in the ABAQUS runs and results the ultimate stress is reached.  
 

Table-1: Comparison with FEM results 

Li/D Initial 
δ0i(mm) 

Euler’s Load & Stress FSP Collapse(kN) 

With Internal Pressure 

Euler’s 
Load 

PE(kN) 

Euler’s 
Stress 
σE(Mpa) 

Ultimate 
Stress 

ABAQUS 
FE with 
Pressure 

Error(%) 
w.r.t. 

ABAQUS 

0 0.00   7871.194 NA NA 
4 2.902 2.50E+05 1.37E+04 6694.619 8041.080 -16.74 
6 6.529 1.11E+05 6.09E+03 6546.097 7324.820 -10.63 
8 11.607 6.25E+04 3.43E+03 6348.670 6828.900 -7.03 
12 26.119 2.78E+04 1.52E+03 5844.567 5913.680 -1.17 
15 40.815 1.78E+04 9.75E+02 5408.596 NA NA 
20 72.577 1.00E+04 5.48E+02 4660.695 4027.00 15.74 

6. CONCLUSIONS 

         This paper presented a mathematical formulation regarding the investigation of compressive 
collapse loads of pressurized FSPs. A strategy for obtaining collapse loads as a function of the span 
length, initial imperfection, and fully plastic stress capacity has been presented and discussed. Examples 
of collapse loads, for pressurized FSPs with a variety of lengths and initial imperfections, were compared 
to the sophisticated FE results from the ABAQUS program. The numerical tests show that the proposed 
analytical formulation represents a good approximation to freespan solutions. Instead of yield stress, the 
analytical solutions were almost coincident with the collapse results generated by ABAQUS FE analyses. 
Each complex nonlinear FE run in ABAQUS took approximately 5 hours of CPU on a SUN workstation. 
Finally, it is noted that the scope of the present formulation is not to propose a method to substitute 
precise FEM modeling and analyses, but to provide an easy, faster and practical way for a first assessment 
of compressive collapse loads of pressurized FSPs for the petroleum industry. 
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Figure 9: Comparison of analytical and FEM results for FSP  
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