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Abstract. The experimental determination of critical buckling load of structures undergoing lateral 
buckling has usually been accompanied by the application of certain and just a few deformation 
characteristics such as lateral displacement and/or twist. This paper explores the possibility of 
application of various deformation variables such as web transverse and longitudinal strains, vertical 
deflection, and angles of twist of top and bottom flanges for experimental determination of the critical 
buckling load of I-beams with different initial geometrical imperfections undergoing elastic lateral-
distortional buckling. After demonstrating the linear relationship between lateral displacement and the 
various aforementioned deformation variables, the four Southwell, Massey, Modified, and Meck 
extrapolation techniques are applied on these various deformation variables, and consequently 
satisfactory estimates are acquired for the critical buckling loads. 

1 INTRODUCTION 

The extrapolation or plotting techniques are experimental methods developed for determining 
experimentally the critical buckling load of structures, without having to test them to failure. By plotting 
the results of a structure test in a certain manner, it would be possible to determine the structure’s 
buckling load. 

Southwell [1] initially proposed a plotting method for a concentrically loaded pin-ended column with 
a sinusoidal initial imperfection. Later on, Massey [2], Trahair [3], and Meck [4] successfully applied this 
method and variations of it to predict buckling loads for beams. 

A search of the literature shows that the extrapolation techniques have mostly been used on certain 
and just a few deformation characteristics such as lateral displacement and/or twist, and also Mandal and 
Calladine [5] demonstrated that lateral displacement tends to be proportional to rotation as deformations 
increase in lateral-torsional buckling mode. In a recent research work reported by the author [6], it was 
demonstrated that lateral displacement in I-beams undergoing lateral-distortional mode of buckling tends 
to be directly coupled with the web transverse strains developed as a result of occurrence of web 
distortion, and accordingly the application of the extrapolation techniques on the web transverse strains 
yielded good predictions for the critical buckling load. 

Based on findings of the previous studies, the possibility of application of various deformation 
variables for experimental determination of the critical buckling load is explored in this paper. Initially, 
the relationship between lateral displacement and the various considered deformation variables including 
web transverse and longitudinal strains, vertical deflection, and angles of twist of top and bottom flanges 
of I-beams with different initial geometrical imperfections is investigated, and subsequently the 
applicability of the Southwell, Massey, Modified, and Meck Plots on the aforementioned deformation 
variables is studied. 
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Four finite element lateral-distortional buckling solutions are developed using the ABAQUS software 
system [7]. All of the solutions are of simply-supported steel I-beams subjected to uniform bending 
moment with identical cross-section dimensions hw=900 mm, bf=240 mm, tw=5 mm, tf=20 mm, and 
L=7000 mm. The material properties adopted for the beams are E=200 GPa, v=0.3, Fy=345 MPa, and 
G=0.385E. The beam cross-section components, i.e. flanges and the web, were modeled using a four-
node shell element S4R5. Finally, the details of various geometrical imperfection forms of the beams are 
provided in Table 1. 
 

Table 1: Details of various geometrical imperfection forms of the beams 

Initial imperfections at center of beam 
Beam number Initial imperfection form 

Crookedness (mm) Twist (rad) 
1 - - - 
2 Half-sine wave along the length - 0.04363 

3 Half-sine wave along the length 
20  (lateral displacement) 
20  (vertical displacement) 

- 

4 Half-sine wave along the length 
20  (lateral displacement) 
20  (vertical displacement) 

0.04363 

 

2 RELATIONSHIP BETWEEN LATERAL DISPLACEMENT AND OTHER 
DEFORMATION VARIABLES 

Before applying the various deformation variables for experimental determination of the critical 
buckling load, the relationship between lateral displacement and the considered deformation variables is 
explored. It should be noted that the lateral displacement of the top flange is applied in this study. 

Lateral displacement vs. web transverse strain: In this case, the relationship between lateral 
displacement and web transverse strain representing web distortion and measured at midspan and 
midheight is investigated. The acquired data are plotted straightforwardly as lateral displacement against 
web transverse strain, as shown in Figure 1. The linear equations obtained using the least squares method 
and the respective R-squared values are displayed in the figures. As seen in the figures, it is evident that 
after the initial stages of loading the two deformation characteristics become proportional to each other. 

 
Lateral displacement vs. web longitudinal strain: In addition to the web transverse strain, the 

relationship between lateral displacement and web longitudinal strain is investigated as well. As seen in 
Figure 2, lateral displacement is plotted against web longitudinal strain (measured at midspan and 
midheight), and the obtained linear equations as well as the R-squared values are displayed on the chart. 
It is clearly observed that after the initial loading stages, the data points align with the linear portion near 
the latter loading stages and the direct coupling of the two deformation characteristics becomes evident. 
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                                        (a) No imperfection                                              (b) Initial twist 
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                                       (c) Initial crookedness                              (d) Initial twist and crookedness 
Figure 1: Plot of lateral displacement against web transverse strain 
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                                         (a) No imperfection                                            (b) Initial twist 
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                               (c) Initial crookedness                         (d) Initial twist and crookedness 
Figure 2: Plot of lateral displacement against web longitudinal strain 
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Lateral displacement vs. vertical deflection: The proportionality between the lateral displacement 
and vertical or in-plane deflection at midspan and midheight of the analyzed I-beams undergoing lateral-
distortional buckling is investigated in here. The plots of lateral displacement against vertical deflection 
are shown in Figure 3. The linear equations and R-squared values are displayed in the figures as well. To 
a fair approximation, lateral displacement and vertical deflection seem to be proportional to each other 
and the linearity range is comparatively large in this case. 
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                              (a) No imperfection                                            (b) Initial twist 
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                           (c) Initial crookedness                               (d) Initial twist and crookedness 
 

Figure 3: Plot of lateral displacement against vertical deflection 
 

Lateral displacement vs. angle of twist: Lastly, the relationship between the lateral displacement and 
angles of twist of top and bottom flanges of the I-beams is examined. Unlike the lateral-torsional mode of 
buckling, in lateral-distortional buckling mode top and bottom flanges have different angles of twist, 
hence the two angles of twist are taken into consideration in this study. Plots of lateral displacement 
against angles of twist of top and bottom flanges are made and shown in Figure 4. It is evident that lateral 
displacement and angles of twist of the two flanges are directly coupled. 
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                              (a) No imperfection                                             (b) Initial twist 
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                            (c) Initial crookedness                              (d) Initial twist and crookedness 
 

Figure 4: Plot of lateral displacement against angle of twist 
 

3 APPLICATION 

Based on the linear relationship between lateral displacement and the other considered deformation 
variables, it seems logical to obtain straight lines by applying the extrapolation techniques on the various 
deformation variables, and also acquire favorable predictions for the buckling load. To prove this, the 
following five case studies are performed. 

Lateral displacement: In this case, Southwell, Massey, and Modified Plots are applied on the lateral 
displacement of the top flange at midspan. As an example, the Southwell, Massey, and Modified Plots for 
beam 4 are shown in Figure 5. The extrapolated-to-ultimate failure moment ratios for the three methods 
are also given in Table 2. 
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             (a) Southwell Plot                           (b) Massey Plot                               (c) Modified Plot 
 

Figure 5: Southwell, Massey, and Modified Plots (beam 4) 
 

Table 2: Comparison of the ultimate failure moments with the extrapolated moments for the case of 
lateral displacement 

Beam number MSouthwell/Mu MMassey/Mu MModified/Mu 

1 1.038 0.992 1.025 
2 1.069 1.352 1.051 
3 1.137 1.174 1.189 
4 1.165 1.474 1.232 

    

Average Discrepancy (%) 9.07 18.44 10.50 
 

In spite of some scatter in the results, it can be seen from the table that the extrapolated moments are 
generally in good agreement with the ultimate failure moments. Moreover, as it is seen, the lowest 
average discrepancy is found in the case of the Southwell Plot. 

Web transverse strain: The four Southwell, Massey, Modified, and Meck Plot methods are applied 
on the web transverse strains captured at the mid-height and midspan of the analyzed beams. The 
extrapolated-to-ultimate failure moment ratios for the plotting methods are given in Table 3. 

 
 

Table 3: Comparison of the ultimate failure moments with the extrapolated moments for the case of web 
transverse strain 

Beam number MSouthwell/Mu MMassey/Mu MModified/Mu MMeck/Mu
 a 

1 1.038 0.992 0.995 1.040 
2 0.950 1.022 1.003 1.033 
3 1.010 1.017 1.002 1.009 
4 1.036 1.042 1.008 0.992 

     

Average Discrepancy (%) 3.29 2.15 0.45 2.18 
a MMeck is obtained as a result of the use of Meck Plot method on lateral displacement and web transverse 
    strain. 
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As it is seen in Table 3, some scatter in the results is present in this case as well. In general, the 
agreement between the extrapolated and the ultimate failure moments is satisfactory in all cases. Lastly, in 
this case, the lowest average discrepancy is found in the case of the Modified Plot. 

Web longitudinal strain: In this case, the use of Southwell, Massey, Modified, and Meck Plots on 
the web longitudinal strains captured at the mid-height and midspan of the considered I-beams, is 
investigated. The extrapolated-to-ultimate failure moment ratios for the four considered Plot methods are 
presented in Table 4. 
 
 
Table 4: Comparison of the ultimate failure moments with the extrapolated moments for the case of web 

longitudinal strain 

Beam number MSouthwell/Mu MMassey/Mu MModified/Mu MMeck/Mu
 a 

1 1.038 0.992 1.044 1.014 
2 1.069 1.022 1.051 1.092 
3 1.010 1.087 1.044 1.018 
4 1.036 1.114 1.059 1.091 

     

Average Discrepancy (%) 3.64 5.28 4.73 4.96 
a MMeck is obtained as a result of the use of Meck Plot method on lateral displacement and web 
longitudinal strain. 
 
 
 

As can be seen from the results in Table 4, despite some scatter, the agreement between the 
extrapolated and the ultimate failure moments is satisfactory. Furthermore, in this case, the lowest 
average discrepancy is found in the case of the Southwell Plot. 

Vertical deflection: The applicability of the extrapolation techniques on the beam midspan vertical 
deflection is studied in this case. The extrapolated-to-ultimate failure moment ratios for the four applied 
plotting methods are given in Table 5. 
 
 
 

Table 5: Comparison of the ultimate failure moments with the extrapolated moments for the case of 
vertical deflection 

Beam number MSouthwell/Mu MMassey/Mu MModified/Mu MMeck/Mu
 a 

1 1.038 1.072 1.025 1.022 
2 1.069 1.209 1.040 1.104 
3 1.137 1.174 1.126 1.010 
4 1.165 1.318 1.154 1.077 

     

Average Discrepancy (%) 9.07 15.74 7.72 4.92 
a MMeck is obtained as a result of the use of Meck Plot method on lateral displacement and vertical 
    deflection. 
 
 

In spite of the scatter in the results, it may be concluded that the extrapolated and the ultimate failure 
moments are generally in good agreement in all cases. Also, the lowest average discrepancy in the present 
case study is interestingly found in the case of the modified Meck Plot. 

Angle of twist: In the last case study, the four considered extrapolation techniques are applied on the 
angles of twist of both top and bottom flanges captured at midspan of the analyzed beams. The 
extrapolated-to-ultimate failure moment ratios for the Southwell, Massey, Modified, and Meck Plot 
methods are presented in Table 6. 
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Table 6: Comparison of the ultimate failure moments with the extrapolated moments for the case of angle 
of twist 

Beam number Locationa MSouthwell/Mu MMassey/Mu MModified/Mu MMeck/Mu
 b 

TF 1.038 0.992 1.001 0.948 
1 

BF 1.038 0.992 1.022 1.007 
      

TF 0.950 1.022 1.002 1.037 
2 

BF 1.069 1.209 1.042 1.046 
      

TF 1.010 1.017 1.007 0.956 
3 

BF 1.137 1.286 1.181 1.043 
      

TF 1.036 1.042 1.011 1.025 
4 

BF 1.165 1.474 1.209 1.066 
      

TF 3.29 2.15 0.50 3.92 
Average Discrepancy (%) 

BF 9.07 18.11 9.72 3.86 
a  TF and BF stand for “top flange” and “bottom flange”, respectively. 
b MMeck is obtained as a result of the use of Meck Plot method on lateral displacement and angle of twist. 
 

As it is seen in Table 6, despite some scatter in the results, the agreement between the extrapolated 
and the ultimate failure moments is generally satisfactory in both cases. Finally, in this case study, the 
lowest average discrepancies for the cases of angles of twist of top and bottom flanges are found in the 
cases of Modified and Meck Plots, respectively. 

4 CONCLUSION 

Based on the key findings regarding the proportionality between lateral displacement and other 
considered deformation variables including web transverse and longitudinal strains, vertical deflection, 
and angles of twist of top and bottom flanges of the I-beams undergoing elastic lateral-distortional 
buckling, the applicability of the Southwell, Massey, Modified, and Meck extrapolation techniques on the 
various deformation variables was investigated in this paper and generally satisfactory and reliable results 
were obtained. The results of this study may be considered as an indication of a great extension in the 
application of the extrapolation techniques. 
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