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Abstract. The corotational technique is adopted for the analysis of 3D beams. The technique applies to a 
two-noded element a coordinate system which continuously translates and rotates with the element. In 
this way, the rigid body motion is separated out from the deformational motion. Then, a mixed 
formulation is adopted for the derivation of the local element tangent stiffness matrix and nodal forces. 
The mixed finite element formulation is based on an incremental form of the two-field Hellinger-Reissner 
variational principle to permit elasto-plastic material behavior. The proposed element can be used to 
analyze the nonlinear buckling and postbuckling of 3D beams. The mixed formulation solution is 
compared against the results obtained from a corotational displacement-based formulation having the 
same beam kinematics. The superiority of the mixed formulation is clearly demonstrated. 

1 INTRODUCTION 

In recent literature, there have been notable contributions to improve the accuracy and efficiency of 
displacement-based finite elements. This approach has the limitation in elasto-plasticity since the 
approximations of the axial strains and curvatures are constrained by the element's assumed displacement 
fields. Nonetheless, these curvatures can vary in a highly nonlinear fashion along the length of an elasto-
plastic structural member. For example, Izzuddin and Smith [1] found that a large number of 
displacement-based beam finite elements are typically required to represent elasto-plasticity behavior 
accurately. In the mixed formulation, both internal forces and displacements are interpolated 
independently. This formulation addresses the fundamental limitation of conventional displacement-
based elements: the inability of simple displacement polynomials to represent the highly nonlinear 
distribution of the curvatures along the member lengths due to general distributed yielding.  

The corotational approach has been recently adopted by several authors to handle the geometric 
nonlinearity in 3D displacement-based beam models (Alsafadie et al. [2], [3], Battini and Pacoste [4], [5], 
Crisfield and Moita [6]). This paper extends the works of Battini on corotational beam elements by 
applying the two-field Hellinger-Reissner variational principle for the development of a mixed local 
formulation. The corotational approach is employed to handle the geometric nonlinearity, where, in the 
corotational frame, the element rigid body motion has been removed and the formulations focus solely on 
the element deformational degrees of freedom.
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2 COROTATIONAL FRAMEWORK FOR 3D BEAMS 

The central idea in the corotational formulation for a two-noded 3D beam is to introduce a local 
coordinate system which continuously rotates and translates with the element. Then, local deformational 
displacements ld  are defined by extracting the rigid body movements from the global displacements gd . 
The local displacements are expressed as functions of the global ones, i.e. 

( )l l g=d d d (1)

Then, ld  is used to compute the internal force vector lf and tangent stiffness matrix lK  in the local 
frame. The transformation matrix B  between the local and global displacements is defined by 

l gδ δ=d B d (2) 

and is obtained by differentiation of (1). The expression of the internal force vector in global coordinates 

gf  and the tangent stiffness matrix gK  in global coordinates can be obtained by equating the internal 
virtual work in both the global and local systems, i.e. 

, ( ) /
l

T T T
g l g l l g= = + ∂ ∂

f
f B f K B K B B f d  (3) 

Relations (1), (2) and transformations (3) are explained in details in [4].  

3   NONLINEAR BERNOULLI MIXED LOCAL ELEMENT FORMULATION 

In this section, the internal force vector lf  and tangent stiffness matrix lK  of a mixed local element 
formulation based on the kinematics assumption of the Bernoulli beam theory are derived. 

3.1 Kinematics and local displacements interpolations 

Figure 1: Local beam configuration. 

Let 0 ( , , )P x y zx  denote the position vector of an arbitrary point P in the initial configuration and let 
( , , )P x y zx denote the position vector of P in the current configuration (see figure 1). 
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where 0
Gx  and Gx  denotes the position vectors of the centroid G in the initial and current onfigurations, 

respectively. In the case of thin-walled open cross-sections, the normalized warping displacement is 
expressed as the product of the warping parameter ( )xα  and the warping function ( , )y zω . To handle in 
a convenient way nonsymmetric cross-sections with distinct shear center and centroid, the warping 
function ω  is defined according to Saint-Venant torsion theory and refers to the centroid G, [7]:
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( , ) c cy z y z z yω ω= − +  (5) 

and ω  refers to the shear center  defined by its coordinates cy , cz . The orthonormal triad , ( , , )i i x y z=a

which specifies the orientation of the current cross-section, is given by 

, ( , , )i i i x y z= =a Rr  (6) 

The rotation defined by the matrix R  can be considered as the sum of two bending rotations and a 
twist rotation, and given by (cf. [8]).

, , , ,

,

,

1

1

1

x x x x x x

x x

x x

v w w v

v

w

ϑ ϑ
ϑ

ϑ

− − − +
= −R  (7) 

where v , w  and xϑ  are the transverse displacements and the twist rotation of the cross-section centroid 

relative to the local coordinates system, respectively. Introducing the local rotation matrix defined in (7) 
into(4), the displacement vector can be evaluated as 

, , , ,( ) ( )x x x x x x

x

x

U u y v w z w v

V v z

W w y

ϑ ϑ ωα
ϑ

ϑ

= − + − − +
= −
= +

 (8) 

To obtain the strain vector the following assumptions are adopted: the nonlinear shear strain 
components generated by warping are omitted since warping effects are rationally taken into account in a 
linearized way only, the warping deformations are proportional to the variation of the torsional angle 
(Vlasov assumption), an average value of the axial strain is taken in order to avoid membrane locking and 
finally the nonlinear terms in the expressions of the bending curvatures  and are neglected. With these 
modifications, the following strain expressions are obtained: 

2 2
,

,

,

1
( )

2
2 ( )

2 ( )

o
xx av z y x x x

xy y x

xz y x

I
y z r

A
z

z

ε ε κ κ κ ωκ

ε ω κ
ε ω κ

= − + + − +

= −

= −

 (9) 

with , , , , ,, ,x x x y xx c x xx z xx c x xxw y v zκ ϑ κ ϑ κ ϑ= = − − = −   

and 2 2 2( )r z y= + , 2 2 2 2
, , , ,

1 1
,

2
o

av x x x x x o

L A

I
u v w dx I r dA

L A
ε ϑ= + + + =

Since the strain field in (9) is obtained from the local displacement field ld , therefore, all the 
components of the strain vector deduced from ld  will be designated with a superimposed hat and 
combined as ˆ ˆ ˆˆ ( 2 2 )xx xy xzε ε ε= . Based on the above expression for strain vector idealization, the strain at 
any point in the cross-section of the beam element can be related to the cross-sectional generalized strain 
vector 2

,

1
ˆ ( )

2av y z x x x xε κ κ κ κ κ= −e  as  
ˆˆ ( , ) ( )y z x= A e  (10) 

In the present formulation, the axial rotation xϑ  is interpolated with shape functions based on the 
closed-form solution of the torsional equilibrium equation for an elastic prismatic and geometrically 
linear beam. Cubic Hermitian shape functions are chosen for the transverse displacement v and w of the 
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centroid of the cross-section relative to the local element axes. And finally, linear interpolation is adopted 
for the axial elongation u  of the local element. Thus, the variation in the cross-section deformation 
ê can be written as ˆˆ lδ δ= ee N d . Hence, an infinitesimal change in strain vector can be written as 

ˆˆ lδ δ= eA N d (11) 

3.2 Equilibrium and generalized stress interpolation functions

      The generalized stress resultants vector S, which is work conjugate to the generalized strains ê, may 
be expressed in vector form as S=( N My Mz B  Tsv) where N is conjugate to av,  My and Mz are 
conjugate to y and z, respectively. The bimoment B, Wagner stress resultant , and the uniform torque 
Tsv are conjugate to x,x, x

2/2 and x, respectively. Within each element, the generalized stress resultant 
internal force vector is approximated as 

1= S SS N f (12) 

where Sf =( N MI
y MI

z B
I T  MII

y MII
z B

II) the corotational force degrees of freedom of the mixed 
formulated element (where I: first node, II: second node and T a constant torque) and 1SN is the force 
shape functions matrix satisfying the equilibrium equations. 

1

, ,
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where 
[ ]sinh ( ) sinh( )

,
sinh( ) sinh( )

I II
B B
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f f

k L k L

−
= − =  and 

G J
k

E Iω

=

The resulting element will subsequently be termed as bmw3d element. It should be mentioned that 
relation (12) includes P-  effects in the internal moment fields, based on the interpolated transverse 
displacements. The variation of the generalized stress resultant internal force vector, may be expressed as 

2 1lδ δ δ= +S S SS N d N f  (14) 

3.3 Hellinger-Reissner potential for beams 

In the Hellinger-Reissner mixed formulation, both the displacement and the internal forces are 
approximated by independent shape functions. This principle is applied to a beam element of length L loaded 
by end forces only. This two-field variational principle yields two sets of nonlinear equations 

ˆ 2 ˆ( ) 0T T ext
l

L L

dx dx= + − − =Q e SE N S N e e F  (15) 

1 ˆ( ) 0T

L

dx= − =C SE N e e  (16) 

where EQ and EC are the element equilibrium and element strain-displacement compatibility equations, 
respectively. A third equation, the cross-section equilibrium, may be expressed as 

0Σ= − =QS S S  (17) 



551

R. Alsafadie et al.

where S is given by the nonlinear cross-section constitutive relation and represents a general function 
that permits the computation of cross-section stress resultants for given cross-section deformations. The 
linearization of the cross-section constitutive relation S = S (e) is obtained using the cross-section tangent 
stiffness matrix /Σ= ∂ ∂k S e . The cross-section tangent exibility matrix q is obtained by inverting the 
cross-section tangent stiffness matrix: q=k-1. Furthermore, S is the interpolated generalized stresses acting 
over a cross-section and defined by (12).  

3.4 Linearization of the Hellinger-Reissner functional 

The nonlinear system of equations EQ=0, EC=0 and SQ=0 may be solved using various combinations 
of Newton iteration at the element, and cross-section levels. Since interelement compatibility is not 
enforced for the generalized stress variables interpolation, the nonlinear discretized strain-displacement 
compatibility equation EC=0 can be solved iteratively at the element level for every global equilibrium 
iteration. Similarly, the nonlinear constitutive equation SQ=0 can be solved iteratively at the cross-section 
level for every element level iteration. In the following Subsections, the consistent linearization of the 
above nonlinear equations is presented. In the process of consistent linearization, it is important to 
recognize the arguments of any given function. 

3.4.1 Linearization of the Cross-section Constitutive Equation 

By expanding SQ=0  about the current cross-section state while holding S constant, we can write 

1 ( )j j j j j j+
Σ

∂
≈ + Δ Δ = − = −

∂
Q

Q Q Q

S
S S e e qS q S S

e
 (18) 

3.4.2 Linearization of the Element Compatibility Equation 

The incremental form of the element compatibility condition EC=0 may also be derived by taking a 
Taylor series expansion of EC=0 about the current state variables fS and dl

1i i i i
l

l

+ ∂ ∂≈ + Δ + Δ =
∂ ∂

C C
C C S

S

E E
E E d f 0

d f
 (19) 

Then, solving for fi
S, we obtain 

1
11 1 12( )i i i

l Cκ
−Δ = + − Δ +Sf H M G H d E  (20) 

3.4.3 Linearization of the Element Equilibrium Equation 

Although the linearization of the discrete weak-form of the element equilibrium equation EQ=0
follows standard procedure [35, 36], this linearization is complicated by the presence of displacement-
dependent nonlinear interpolation functions for the generalized stresses. For the case at hand, the 
consistent local tangent stiffness equations are obtained by expanding (15) for each of the state variables 
dl, fS and Fl

ext about the current state. Again, a Taylor series expansion of EQ=0 is written as follows 

1 ,n n n n ext n
l l

l

+ ∂ ∂
≈ + Δ + Δ − Δ =

∂ ∂
Q Q

Q Q S
S

E E
E E d f F 0

d f
 (21) 

This equation can be rewritten by substituting nΔ Sf  from (20), and solving for n
lΔd  . Hence, 

, 1n ext n
l l l l

+Δ = −K d F f  (22) 

where lK  is the local consistent tangent stiffness matrix given by 

1
2 2 22 1 12 11 1 12( ) ( )T T

l g κ κ
−= + + − + + − + −K K G G H M G H H M G H  (23) 

and lf  is the local internal force vector 
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1
1 2 1 12 11ˆ( ) ( )T n T n n T n

l

L

dx κ
−= + − + + −S S Cf G f N e e M G H H E  (24) 

3.5 Nonlinear state determination algorithm 

The nonlinear system of equations is iteratively solved using Newton's method using three imbricated 
loops at different levels (structural level, element level and cross-section level). The local element strain-
displacement compatibility equation EC=0 is solved iteratively for every global equilibrium iteration. 
Similarly, the local cross-section constitutive equation SQ=0  is solved iteratively at the cross-section 
level for every element compatibility level iteration. Therefore, residuals at the cross-section equilibrium 
and element compatibility levels are eliminated through iterations at each of these levels. In this 
subsection, the superscripts n, i and j denote the iteration indices for the global structural equilibrium, the 
element compatibility and the cross-section equilibrium levels, respectively. Before launching the 
computer program (initialization), the local displacement vector for each finite element and the 
generalized strains e at each Gauss point along the element length, need to be stored as zero vectors. Once 
the local displacements are obtained, the state determination procedure, established to obtain the internal 
force vector and tangent stiffness matrix in the local frame, starts as follows: 

1. Evaluate the generalized strains ê  compatible with the interpolated displacements ld
ˆ ˆ( )n n

l=e e d

2. Evaluate the nodal force degrees of freedom  Sf . (iterate on iΔ Sf )  
1 1

11 1 ˆ, : ( )i i i i i i T n i

L

where dx− +Δ = = + Δ = −S C S S S C Sf H E f f f E N e e

3. Evaluate the generalized stress resultant internal force vector S
1 1 1

1( )i i i+ + +=S S SS f N f

4. Cross-section equilibrium level : Consider for the first iteration at this level that :j i=e e , then, 
evaluate the generalized strains e  derived from the interpolated stress-resultant force fields 

1 1 1( ( ) ( )), : ( ) ( )
Tj i i j j j j j j j j

A

where dA+ + +
Σ ΣΔ = − = + Δ =Se q S f S e e e e S e A Ae

5. Repeat the above step until 1 1i j tolerance+ +
Σ− ≤S S , then consider 1 1:i j+ +=e e  upon convergence. 

6. Repeat the above steps from 2 to 5 until 1i tolerance+ ≤CE , then consider 1 1: , :n i n i+ += =S Sf f e e and 
1:n i+=C CE E upon convergence. 

7. Calculate local element forces lf  and tangent stiffness matrix lK

4 EXAMPLES 

4.1 Cantilever with channel-section 

Figure 2 contains the problem description. This example was first introduced by Gruttmann et al. [7]. The 
beam is modeled using 4 bmw3d elements and the results are compared against 4 and 20 pbw3d 
displacement-based beam elements. These meshes used 2 Gauss points per element length and 80 
integration points within the cross-section. In Figure 2, the load versus the vertical displacement v of 
point O at the cantilever tip is depicted, where the nonlinear response has been computed up to v = 200. 
The results obtained with 4 bmw3d and 20 pbw3d elements are in very good agreement with those 
presented by [7] based on shell elements. Furthermore, the results obtained with 4 pbw3d elements do not 
agree well over a large extend of the computed load deflection curve. It can be observed that, in elasto-
plasticity, the number of mixed-based beam elements used to discretize the structure is considerably 
reduced compared to the number of displacement-based beam elements needed to obtain the load-
displacement curve with the same accuracy. This problem demonstrates the capability of the mixed 
formulation to satisfactorily predict the nonlinear behavior of beams with nonsymmetric cross-sections. 
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Figure 2: Cantilever with channel-section: data and results. 

4.2 Right-angle frame 

The right-angle frame, shown in Figure 3 is subjected to a concentrated out-of-plane load P acting at the 
middle of the span of the horizontal member. In the first model, each member is modeled using 4 bmw3d 
elements with 3 Gauss integration points along the element length. The square beam cross-section is meshed into 
a grid of 64 integration points. Four and 20 pbw3d elements per member are also used for the second and third 
models, respectively, with the same elemnt and cross-section discretization. Nonlinear analysis is also performed 
with FineLg [9], using 20 corotational two-noded spatial beam elements . The load versus the out-of-plane 
displacement of point O curves are depicted in Figure 3 for all models. The comparison between the models 
shows a very good agreement between the results obtained with the mixed model and those obtained with 
FineLg and with 20 pbw3d displacement-based elements per member. 

Figure 3: Right-angle frame: data and results. 

5 CONCLUSION 

This paper proposed an efficient local mixed finite element formulation for the analysis of 3D 
Bernoulli beams with small strains and large displacements and rotations. The corotational technique 
proposed in [4] is employed here. The local strains are derived based on a consistent second-order 
linearization of the fully geometrically nonlinear Bernoulli beam theory. A 3D, geometric-nonlinear, 
elasto-plastic local beam element based on the incremental form of the two-field Hellinger-Reissner 
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functional has been presented. This element is targeted particularly for the analysis of thin-walled beams 
with generic open cross-section where the centroid and shear center of the cross-section are not 
necessarily coincident. Several numerical examples have demonstrated the superiority of the mixed 
formulation over displacement-based one: the use of mixed formulation leads to a considerable reduction 
in the number of elements needed to perform the analysis with the same accuracy. 
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