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Abstract. Stability analysis and design has always played a key role in the process of verification of steel 
structures. The possible analysis methods and design procedures have long history with a plentiful 
literature providing various proposals for the engineers. This paper concentrates on the use of different 
types of eigenvalue analysis as a simple and powerful tool for stability design. Nowadays almost all the 
engineering software products have some kind of eigenvalue analysis options so these tools are easily 
available for the practicing engineers providing them a deeper look on the structural behavior. Various 
types of application possibilities are reviewed and new methods are proposed supporting the most up-to-
date standard procedures of different levels from the isolated member design to the partial or global 
structural stability design. The suitable theoretical (both mathematical and mechanical) background is 
developed and the numerical procedure is implemented. The technique is applicable for a wide range of 
structural types and stability problems making the automatic effective length calculation possible in 
general without the use of any iterative process or tabulated values for certain cases. An application 
example is presented showing the comprehensiveness of the methods, and special efficiency indicators 
are presented in order to supply information about the adequacy of the applied design method. 

1 INTRODUCTION 

There are two available methods for stability design of steel structures provided by the EN 1993-1-1 
[1]: 

 isolated member approach: Sections 6.3.1, 6.3.2, 6.3.3 
 general method: Section 6.3.4 

The first one is valid for uniform members only and based on structural member isolation and 
buckling mode separation. The main difficulties of this method arise from these two simplifications, the 
member isolation is usually handled by applying suitable effective length factors – considering the 
appropriate support and restraint conditions – while the mode separation is solved by special interaction 
factors creating the connection between the pure loading and buckling cases. There are a great number of 
papers on both topics including some theoretical investigations about the mechanical basics [2, 3] and 
several proposals for the practical application [4, 5]. The EN 1993-1-1 regularizes only the calculation of 
interaction factors the problems coming up from the member isolation are not dealt with in the standard. 
In the general method these two simplifications are eliminated by examining a complete structural part 
and calculating only one slenderness belonging to the real, compound loading and buckling situation. 
Although in the recent version of EN 1993-1-1 there are several restrictions on the application field of 
this method however on the other hand there are heavy research and development efforts on extending its 
applicability [6, 7] and this method is expected to cover much larger area of practical problems then the 
isolated member based conventional procedures. It is also important to note that in case of the general 
method the calculation of the generalized structural slenderness requires more complicated analysis which 
can usually provided only by application of some software package. It seems evident is that in both 



690

József Szalai 

methods the key question is the determination of the slenderness values and especially the calculation of 
the appropriate elastic critical values (critical forces or critical load levels). This aspect is very poorly 
treated in the structural standards and accordingly the practicing engineer is fully responsible for it. 
Moreover the calculated elastic critical values are usually very important and have a significant influence 
on the final result of stability design. 

In this paper the possibilities of eigenvalue analysis for the calculation of elastic critical values are 
examined from the point of view of standard stability design according to the recent version of EN 1993-
1-1. Different application methods are introduced adapted to the different design approaches, and special 
indicator factors are developed highlighting the relevance of the used type of eigenvalue analysis. An 
application example is presented to show the practical working of the different methods. 

2 METHODS OF EIGENVALUE ANALYSIS 

For a usual steel structure composed of beam-column elements the general loss of elastic stability can 
be quite accurately described by bifurcation analysis. In a standard finite element environment this 
problem can be formulated as a linear eigenvalue analysis with the following basic form: 
 
 0GE UKK  (1) 
 
where KE is the elastic stiffness matrix, KG is the second order geometric stiffness matrix,  is the 
eigenvalue and U is the corresponding eigenvector. In the mechanical interpretation the eigenvalue 
denotes the elastic critical load level and the eigenvector shows the eigenshape (eigenmode) or buckling 
shape (buckling mode). It is important to note that the mechanical meaning and accuracy of the calculated 
eigenmodes and eigenvalues highly depend on the definition of stiffness matrices. In this paper special 
decomposition techniques are applied for the compiled geometric stiffness matrix – while the elastic 
stiffness matrix is always formed on the complete structural model – to suitably calculate the elastic 
critical load levels necessary for the certain design approaches. Upon these techniques the following 
eigenvalue analysis are proposed: 
 

 Complete Eigenvalue Analysis (CEA) – the geometric stiffness matrix is compiled on the whole 
structural model 

 Partial Eigenvalue Analysis (PEA) – the geometric stiffness matrix is compiled only on a 
separated part of the structural model  

 Selected Eigenmode Analysis (SEA) – the geometric stiffness matrix is compiled only on 
selected displacement degree-of-freedoms 

 
The CEA is the mostly known and commonly used analysis technique, the resulted critical load levels 

and corresponding buckling modes apply to the whole global structural model – even it is apparently 
restricted to a part of it – and consider the compound loading case. In the further text we write the CEA in 
the following form: 
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The CEA method is applicable for the critical load level calculation for the general stability design 
method. 

If a part of the complete model is examined and intended to design for stability the PEA can be used. 
In this method the structural model is divided into two parts: (P1) a relevant part and (P2) a remaining 
part. Accordingly the complete geometric stiffness matrix can be decomposed: 
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One can obtain an eigenvalue solution for the relevant part by solving the following equation: 
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In a mechanical interpretation this calculation yields special buckling shapes which are induced by the 
internal forces acting only in the members which are part of the relevant substructure while the initial 
stiffness of the whole structure is considered (as a restraint condition for the examined substructure). In 
that sense this solution is similar to the ones applying fictitious springs at the joining parts of the relevant 
substructure modeling the restraints from the remainder of the whole structure. The PEA method also 
provides global type solution for the real, combined buckling situation so it is also applicable for the 
general stability design. 

The third proposed method (SEA) is directly developed for the isolated member approach since it is 
able to calculate the separated buckling modes. In this case the geometric stiffness matrix is compiled in 
such a way that the rows and columns associated with the displacement degree-of-freedom necessary for 
the relevant buckling mode are considered and the rest of the matrix is neglected. For example if the 
subject of the analysis is the lateral buckling about the minor axis (axis ‘z’ according to EN 1993-1-1) 
then those terms are kept only in the geometric stiffness which contain the second order compression 
effect for the selected displacements (uy and z). Further if this buckling mode is required only on an 
isolated member then this reduced compilation is done only on this element. Consequently the second 
order effects of the system are concentrated so as to be able to experience only the relevant buckling 
mode. Considering however the complete first order elastic stiffness matrix of the whole structure the 
appropriate restraints (and accordingly the necessary effective lengths) of the isolated member can be 
calculated quite accurately. The SEA method for the selected i-th buckling mode (for instance Ncr,z) is 
written as follows: 
 
 0crGcrE

zNcr,zNcr,zNcr, UKK  (5) 

3 DEVELOPMENT OF EIGENMODE RELEVANCE INDICATOR (ERI) 

After introducing the proposed possibilities for the determination of elastic critical load levels by 
applying certain eigenvalue analysis methods the next important issue is the selection of the most 
appropriate method for the current structural problem examined. It is very important to detect the most 
relevant buckling modes of the structure and the associated most proper design method. The introduced 
eigenvalue analysis methods can yield various results and solution possibilities but it is the decision of 
the engineer which method and buckling mode is the most relevant for the problem. In order to help this 
decision special indicator factors are developed showing the relevance of the calculated buckling modes 
(eigenmode relevance indicator – ERI). The ERIs are formulated on energy base, this approach was 
introduced to the interpretation of stability calculations in [8], however, for different purposes; in this 
paper the ERIs are developed so as to supply appropriate information about the described issues. The 
basic formula of all the possible ERIs is the internal (and the corresponding external) energy induced by 
the i-th eigenmode; this can be written using Eq. (2): 
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The next sections present the ERIs in case of the different eigenvalue analysis methods based on Eq. (6). 

3.1 CEA 
When analyzing the complete structure for stability the following questions may arise regarding the 

obtained eigenmodes: 
 
(1) for a certain eigenmode what are the relevant members (relevant model portion)? 
(2) for certain members (certain model portion) which is the most relevant eigenmode? 
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For the problem (1) let the energy be calculated for members or model portions (k denotes the relevant 
member or model portion): 
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In this case the elastic stiffness of the relevant model part is considered only. Obviously the sum of all the 
energy values of model parts gives the total energy of the complete model, i.e. (having m number of 
model parts): 
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Accordingly an ERI can be constructed so as to show the relevance of the separated model portions 
considering the i-th eigenmode as a percentage: 
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Problem (2) is more complicated but also more significant, since in the case of a complex structural 
model it is usual, that different eigenmodes describe the buckling behavior of distinct parts of the model. 
For that reason a scaling procedure is necessary in order to select the appropriate eigenmode for the 
stability design. To develop a proper scaling factor let us examine the basis of the stability design 
approach of the EN 1993-1-1 which is the buckling curve based reduction factor. The mechanical model 
for the buckling reduction factors is the Ayrton-Perry formula. In this model the failure is associated with 
the load level at which the second order maximum elastic stress of the geometrically imperfect member 
reaches the yield stress. Consequently the reduction factor depends mainly on the amplified imperfection 
which has usually a shape equal to an appropriate eigenmode or a combination of them. The scaling 
factor should therefore consider this effect to show the importance of the eigenmodes in accordance with 
the mechanics of the buckling reduction factors. Firstly the basic amplitudes for the eigenmodes are 
determined by normalizing using the elastic stiffness matrix:  
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As a result the greater the critical factor the less the amplitude of the eigenmode is, this is realistic when 
considering the eigenmodes as geometric imperfection. It is known [6] that the geometrical imperfections 
having the shape of an eigenmode cause the following additional amplified second order displacements: 
 

 imp
cr
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1 UU  (11) 

 
If the normalized eigenmodes of Eq. (10) are considered as imperfections in Eq. (11) then a further 
scaling factor can be created by calculating the energy of this amplified imperfection in the k-th model 
portion: 
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Finally if it is considered that enough number (m) of eigenmodes is calculated (i.e. the last eigenvalue – 
what is the highest elastic critical load level – is sufficiently high) then the following ERI can be 
constructed showing the relative significance of the i-th eigenmode for the k-th model portion: 
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3.2 PEA and SEA 
In this case the determination of the relevant model portion is not examined since the preliminary 

selection of model part (or isolated member) aims at concentrating the buckling mode to this part. What is 
important however that how accurate the calculated partial buckling mode is compared to the possible 
complete modes. Let us write the eigenvalue equation for the complete structure (Eq. (2)) using the 
partial eigenmode and eigenvalue yielded by the solution of Eq. (4): 
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Eq. (14) expresses an error force vector generated by the partial buckling mode on the remaining model 
portion (P2). Obviously if this term is significant then the partial buckling mode is possibly irrelevant 
which shows that the current model portion has no distinct buckling problem. On the other hand if this 
force approaches zero then the buckling mode is dominant and accurate for the selected model portion. 
To develop a straightforward indicator we use again an energy format for Eq. (14): 
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4 APPLICATION EXAMPLE 

In the following example the CEA method is used and the ERI1 and ERI2 factors are examined. 
 

 
Figure 1: Model of the example (made in ConSteel [10]). 

 

C1 

C2 

B1 
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In Fig. 1 the structural model is illustrated, which consists of two columns (C1 and C2) of HEA200 
and a beam (B1) of HEA220 loaded by a 30 kN/m line load. According to the support condition four 
cases are evaluated (the beam is always simply supported) summarized by Table 1. 
 

Table 1: Evaluated support conditions. 
 C1 C2 

Case1 Pinned Pinned 
Case2 Fixed Pinned 
Case3 Pinned Fixed 
Case4 Fixed Fixed 

 
All the eigenvalue analysis are calculated by ConSteel software [9], [10] using a 7 degree-of-freedom 
finite element model. Figs. 2-5 show the calculated eigenmodes and elastic critical factors for Case1- 
Case4 – all buckling modes form some kind of out-of plane buckling –, and Tables 2-5 contain the ERI1 
and ERI2 factors evaluated for the beam and the two columns (for ERI1 the columns and for ERI2 the 
rows give the 100% value). 
 

cr1 = 3,43 cr2 = 8,03 cr3 = 13,39 cr4 = 26,27 

 
Figure 2: Case1 – first four eigenmode and eigenvalue. 

 
Table 2: Case1 – ERI1 and ERI2 factors 

 ERI1 ERI2 
 cr1 cr2 cr3 cr4 cr1 cr2 cr3 cr4 

B1 99,6 2,4 95,4 7,6 96,1 0,3 3,5 0,1 
C1 0,1 97,5 4,4 12,9 0,5 97,1 1,4 1,0 
C2 0,3 0,1 0,2 79,5 26,9 0,4 0,6 72,1 

 
 
 

cr1 = 4,18 cr2 = 13,29 cr3 = 17,1 cr4 = 26,34 

 
Figure 3: Case2 – first four eigenmode and eigenvalue. 

 
Table 3: Case2 – ERI1 and ERI2 factors 

 ERI1 ERI2 
 cr1 cr2 cr3 cr4 cr1 cr2 cr3 cr4 

B1 73,1 91,7 10,1 5,2 91,7 7,7 0,5 0,1 
C1 26,7 8,2 89,6 0,2 86,8 1,8 11,4 0,0 
C2 0,2 0,1 0,3 94,6 13,9 0,4 0,5 85,2 
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cr1 = 6,51 cr2 = 8,04 cr3 = 13,60 cr4 = 26,93 

 
Figure 4: Case3 – first four eigenmode and eigenvalue. 

 
Table 4: Case3 – ERI1 and ERI2 factors 

 ERI1 ERI2 
 cr1 cr2 cr3 cr4 cr1 cr2 cr3 cr4 

B1 54,1 2,4 91,5 9,4 73,6 2,0 23,8 0,6 
C1 0,0 97,5 4,5 90,4 0,1 92,3 1,3 6,3 
C2 45,9 0,1 4,0 0,2 98,3 0,0 1,6 0,1 

 
 

cr1 = 6,82 cr2 = 13,63 cr3 = 17,28 cr4 = 34,04 

 
Figure 5: Case4 – first four eigenmode and eigenvalue. 

 
Table 5: Case4 – ERI1 and ERI2 factors 

 ERI1 ERI2 
 cr1 cr2 cr3 cr4 cr1 cr2 cr3 cr4 

B1 43,3 89,0 8,1 76,0 66,0 28,8 1,6 3,6 
C1 20,0 5,4 89,9 19,8 60,1 3,4 34,6 1,9 
C2 36,7 5,6 1,9 4,2 95,9 3,1 0,7 0,3 

 
It can be seen that the first and dominant buckling mode is always the lateral-torsional buckling of the 

B1 beam coupled with some form of flexural buckling of the columns. The corresponding critical load 
factors increases from Case1 to Case4 denoting the significance of the applied additional restraints for the 
supports of the columns however from the ERI factors it becomes clear that the contribution of the 
columns to the certain buckling modes is significantly different. From the ERI1 values it can be 
concluded that in the first buckling mode the B1 beam is always dominant and for the other modes the 
dominant member is also highlighted in the tables. Looking at however the ERI2 values the followings 
can be determined for a certain member: 

 which is the most relevant buckling mode; 
 which is the appropriate critical load factor for the calculation of member slenderness in the 

stability design. 
In Case1 the ERI2 values show the strong dominance of the member B1 in the first mode, C1 in the 

second mode and C2 in the fourth mode. This is a consequence of the pure shape of the buckling modes, 
since the columns have pinned supports. In Case2 the fix support of the column C1 has a considerable 
restraining effect on the beam increasing the first critical load factor accordingly in this case the first 
mode is more dominant for the column C1 than the third one which show an isolated buckling mode for 
this member. The column C2 is not really effected by the additional restraint, so the dominant mode 
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remains the fourth one with almost the same critical load factor value. In Case3 the situation is quite the 
same, the column C1 has the dominant isolated buckling mode with same critical load factor as in Case1, 
and for column C2 the first mode is the most relevant. In Case4 from the ERI1 factors it is clear that the 
complete model contributes to the first buckling mode and the ERI2 values are explicitly show that this 
mode is the most relevant for all the members. Naturally the meaning of the ERI2 values can be refined 
by increasing the number of calculated eigenmodes which is usually necessary in case of larger structural 
models. This simple and straightforward example is intended to show the mechanical meaning of the 
different indicator factors.  

5 CONCLUSIONS 

One of the most important issues in stability design which is out of the field of standard regulations is 
the calculation of elastic critical forces or load levels for the determination of slenderness values. In this 
paper several methods are presented for this problem using the eigenvalue analysis based approaches. For 
different structural arrangements different types of buckling modes can be dominant and moreover the 
modern structural standards provide several different possibilities for the stability design. To yield 
appropriate slenderness for the different problems and design methods three approaches are proposed: the 
complete eigenvalue analysis, the partial eigenvalue analysis and the selected eigenmode analysis. Further 
supporting the selection of the relevant approach and eigenmode special indicator factors are developed. 
In an application example the practical working with the proposed eigenvalue analysis approaches and 
indicator factors are presented. 
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