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Abstract. Continuous steel beams used for girders, purlins, crane girders, etc. are subjected to lateral 
torsion buckling. In many cases construction joints of those beams are carried out as moment hinges 
rather than as rigid connections. The study is concerned with the effect of these hinges on the lateral 
stability behaviour and their effect on the design. Based on a numerical approach critical lateral 
buckling loads are calculated for different hinge locations and moment distributions. Finally load 
capacities obtained from equivalent slenderness approach are compared to those from first-yield 
criterion with internal forces from theory 2nd order analysis. 

1 INTRODUCTION 

Figure 1 shows common type of construction joints for continuous I-beams which will be assembled 
on the construction site. These joints are able to transfer shear forces but only small fractions of the 
bending, torsion and warping moments associated with 3-dimensional loading and nonuniform torsion. 
Therefore in the structural analysis it is assumed for the hinge that lateral displacements v and w are 
compatible and 
 
 y z xM M M M 0  (1) 
 

 
Figure 1: Examples of common construction joints for continuous beams 
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While moment hinges may be easily considered in any commercial computer program for in-plane 

stress analysis the allowance of local static boundary conditions in the eigenvalue calculation required for 
lateral buckling design is rather unusual. To account for local boundary conditions within a displacement 
based finite element formulation basically two alternatives are available. Applying as usual static 
condensation to local element stiffness matrix leads to coupled elastic and geometric element matrices 
which are not suitable for numerical eigenvalue solution applying vector iteration. Introducing instead 
double nodes and incorporating coupling conditions during assembly of the system stiffness results in 
uncoupled elastic and geometric system stiffness matrices. The latter approach has been applied to a FE-
program for nonlinear analysis of 3-D beams with open thin-walled cross sections [1]. Bifurcation loads 
from this numerical approach are applied to check for lateral buckling according to Eurocode 3 [2, 
paragraph 6.3.2.2]. Design loads from this approach are compared to ultimate loads obtained by an elastic 
theory 2nd order analysis considering geometric out-of-plane imperfections according to [2, paragraph 
5.3.2]. 

2 NUMERICAL EIGENVALUE APPROACH 

As described above the eigenvalue problem of a continuous beam with a local hinge has been solved 
within a geometric nonlinear formulation by introduction of double nodes with subsequent coupling of 
dofs during the assembling process of elastic and geometric system stiffness matrices. Two procedures 
are available for the numerical solution of the general eigenvalue problem det(A- B) = 0. First a rather 
simple algorithm based on a modified inverse iteration with random generated starting vectors and 
automatic shifting is started. If no convergence is reached subspace iteration with QZ-Algorithm is 
initiated. To verify the procedure bifurcation loads for beams with moment hinge at midspan (fig. 2) have 
been compared with closed-form and numerical solutions. 
 
L = 10 m, IPE360 section 
q applied at centroid 
 

' '
cr x x

' '
cr x x

q 58.9 kN/m (0) = 0, (L) = 0
q 32.4 kN/m (0) 0, (L) 0

x y zB.C. 0 at x 0, x L  

Figure 2: Lateral torsional buckling of beam with hinge 
 

Critical loads for a cantilever beams which is equivalent to the structural system in figure 2 with a 
span of 5m are calculated from analytical equations in [3, eqns.(9.14), (9.17)] as qcr = 57,2 kN ( '

x 0 at 
both ends) and qcr = 27.9 kN ( '

x 0 at both ends) with '
x as the warping displacement. Numerical 

results for the cantilever beam obtained from [1] are identical to those given for the entire beam with the 
hinge in figure 2. 

Specific attention is required, when the joint design in addition cannot transfer shear forces in y-
direction at all or only with considerable web deflections. In this case the left and the right side of the 
beam is essentially uncoupled and so lateral buckling behaviour of the two substructures. 
 

 
Figure 3: Lateral torsional buckling mode of mono symmetric beam with moment hinge 
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If the cross section is not doubly symmetric as shown in figure 3, displacements v und w in the 

direction of the major y- and z-axes are related to the shear centre of the cross section. 

3 CRTITICAL LOADS FOR CONTINUOUS BEAMS WITH HINGES 

3.1 Structural idealization 

To check any continuous beam as shown in figure 4 for lateral torsional buckling applying equivalent 
slenderness procedure the associated lowest eigenvalue qcr for the entire structural system is required. 
 

 
Figure 4: Continuous beam with moment hinge in midspan 

 
Most common qcr is calculated alternatively in engineering practice for a virtually cut out single span 

beam only with appropriate geometric and static boundary conditions at the respective supports. The 
lateral torsional stability is governed by weakest – the most slender – beam. The interaction between the 
single spans depends not only on the major axis bending moments but especially on the boundary 
conditions for out-of-plane bending (v, z) and torsion ( x, x

' ). While in most real structures lateral 
deformations v and torsional rotations x at the supports will be restrained, boundary conditions for z and 

x
' depend strongly on the out-of-plane bending and torsional stiffness of the adjacent spans. To illustrate 

the sensitivity of the buckling load qcr with respect to the b.c. critical loads are calculated for the three 
single spans in fig. 4 with and without warping restraint at the ends and related to the critical value qcr = 
24,94 kN/m for the entire system. Results in table 1 are for L1 = L2 = 8m, L = 10m,  = 0.3 and IPE330 
section. To avoid kinematics in the eigenvalue analyses for span II the rotation at the right end about the 
major y-axis is completely restrained. 

For critical loads in row 2 it is assumed that the rotation z about the weak z-axis is completely 
restrained for all beams at the intermediate supports. Results in row 3 are calculated for unrestrained 
rotations z in a for the left beam, in b for the right beam and the rotation spring stiffness 
 

 ,z
z

1

EI kNmk 3 620 6
L rad

 (2) 

 
at both supports of the beam with hinge. From the results in table 1 it is obvious, that buckling of the 
middle span governs the stability problem and further that the middle span is elastically restrained against 
out-of-plane bending and warping by both outer spans. More general it can be concluded that for most 
practical problems of continuous beams the span containing the hinge will be relevant for stability 
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design. Thus the critical load may be approximated considering only the span with the moment hinge. 
Fully warping restraint at both supports leads to the upper bound and free warping to the lower bound for 
the critical eigenvalue. 
 

Table 1: Critical loads crq  

span I span II span III 

1 '
x,a 0  '

x,a 0  
'
x,a

'
x,b

0

0
 

'
x,a

'
x,b

0

0
 '

x,b 0  '
x,b 0  

2 1.58 1.26 1.22 0.95 1.31 1.11 
3 1.55 1.26 1.20 0.95 1.19 1.05 

 
From the smallest critical load the critical moment and the dimensionless lateral torsional buckling 

slenderness 
 

 y y
LT

cr

W f
M

 (3) 

 
has to be evaluated for the subsequent design check. 

3.2 Critical Loads for single span beams with a moment hinge 
 

 
Figure 5: Bending moment distribution for single span beam with hinge 

 
For a single span beam with a moment hinge as specified in eqn. (1) at distance L from the left end 

(fig. 5) the moment Mb at the right end depends further on the moment Ma and the uniformly distributed 
load q 
 

 
2

b
qL MaM
2

 (4) 
 

As long as the hinge is close to the centre of the span the left and the right segments will interact in 
lateral torsional buckling depending on the bending moment distribution. When the hinge gets closer to 
the right or left bearing, the shorter beam segment will support the longer segment in the out-of-plane 
behaviour. For a hinge very close to one of the bearings the out-of-plane boundary conditions at the hinge 
for the remaining longer segment may be approximated as 
 
  '

z x xv 0 0 0 0  (5) 
 

Figure 6 shows a comparison of critical loads and associated eigenmodes for a beam with uniformly 
distributed load q, a hinge at  = 0.3 and equivalent bending moment distributions about major y-axis in 
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both systems. The total buckling mode is governed by the weaker beam segment and differs from the 
partial mode only slightly with an increase in the critical load for the partial system of 11%. 
 

Bending moment distribution 
 
 
 
 
 
 

Out-of-plane B.C.  
 

IPE300 

 
qcr = 6.87 kN/m 

 
 
 

Buckling mode of beam with hinge
 
 

qcr = 7.61 kN/m = 1.11·6.87 
 
 
 

Buckling mode of right beam segment

Figure 6: Buckling modes and buckling loads for total and partial structure 
 

Results in table 2 for a beam with a total span of 10 m, IPE300 section, varying hinge location , out-
of-plane b.c. as shown in fig. 6 and bending moment Ma = 0 confirm this observation more generally. 
 

Table 2: Comparison of critical loads 

 qcr [kN/m] total beam qcr [kN/m] right segment 
0.5 8.30 13.09 
0.4 7.42 9.67 
0.3 6.87 7.61 
0.2 6.10 6.25 
0.1 5.29 5.30 

 
In figures 7 to 9 the dimensionless critical buckling loads 

 

 
3

cr
cr

z t

q Lq
EI GI

 (6) 

 
for beams with hinge b.c. given in eqn. (1) and z = 0 at both supports are plotted over the stiffness 
coefficient 
 

 
t

EIk
L GI

 (7) 

 
In [3] and similar in [4] it has been shown, that critical loads presented in this dimensionless form are 

applicable to almost any beam with hot-rolled doubly symmetric I-section. From figs. 7b to 9b it follows 
that for beams restrained against warping at the ends the relation between the dimensionless stiffness and 
the dimensionless critical load is almost linear. For beams with free warping b.c. at both ends the relation 
is found to be highly nonlinear with almost asymptotic behaviour for increasing stiffness. 
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Figure 7: Critical loads for beam with hinge at  = 0.4 

 

 
Figure 8: Critical loads for beam with hinge at  = 0.5 

 

 
Figure 9: Critical loads for beam with hinge at  = 0.6 
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4 LATERAL TORSIONAL BUCKLING RESISTANCE 

4.1 Lateral torsional buckling resistance according to Eurocode 3 

The resistance according to EC3 [2, 6.3.2.3] for hot rolled sections is 
 

 pl ,y pl ,yEC3 2
R,d LT LT LT LT LT ,0 LT2 2

2M 1 M 1LT LT LT
LT

1,0
M M1M 0,5 11  (8) 

 
The following investigation was carried out for beams with variable span L, moment hinges and 

IPE300 section (section class 1 [2, table 5.2], buckling curve b [2, table 6.4] and imperfection coefficient 
LT = 0,34 [2, table 6.4]). Further it is conservatively assumed that M1 LT,0= 0,75, = 1,1, = 0,4  and 

f = 1. For lateral buckling capacities with  = 0.5 (fig. 10a) Ma = Ma = qL2/8 and for  = 0.4 (fig. 10b) 
and Ma = qL2/12 the moment Mb = 0.175qL2. Again boundary conditions at both ends are such that 
rotations about z-axis are restrained and warping unconstrained. 
 

 
Figure 10: Dimensionless lateral torsional buckling resistance 

 
Figures 10a and 10b show dimensionless load capacities depending on the dimensionless buckling 

slenderness LT . Curves u,EC3q  in fig. 10 are obtained by dividing the ultimate load derived from eqn. 
(8) by the load qpl associated with fully plastic moment. They agree with the LT -distribution. It is to 
notice that eqn. (8) does not take into account the effect of shear forces. Therefore the cross section 
resistance has to be checked additionally and will restrict the capacity - specifically for small buckling 
slendernesses - with respect to provisions in [2, 6.2.8]. 

4.2 Lateral torsional buckling resistance based on theory 2nd order analysis 
 

Figure 11: Lateral torsional buckling mode of tapered beam with moment hinge 
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For stability design of more general structures like continuous beams with discrete or continuous 
elastic support, arbitrary boundary conditions, intentionally out-of-plane loading and variable cross 
section (see fig. 11) a theory 2nd order three-dimensional stress analysis with geometric out-of-plane 
imperfections leads to a generally applicable approach. 

For class 1 cross sections two criterions [5], [6] are available for definition of the ultimate load 
capacity 

- theory 2nd order first yield criterion 
- theory 2nd order first hinge criterion 
For first yield design the von-Mises stress v anywhere along the beam axis within the cross section, 

obtained from a theory second order analysis of the geometrically imperfect structure with linear elastic 
material behaviour must satisfy 
 

 yII II 2 II 2
V x,d d

M 0

f
max ( ) 3( )  (9) 

In (9) II
x,d  is the theory 2nd order axial stress due to the combined action an axial force N, bending 

moments yM  and Mz about principal axis and the warping moment M  from nonuniform torsion. The 
theory 2nd order shear stress II

d  is calculated from shear forces Vy and Vz and the St. Venant’s torsion 
moment MTP. Graphs u,el,vq in figs. 10 are obtained by dividing the ultimate load derived from eqn. (9) 
by the qpl. From comparison with the u,el,xq curve, which neglects shear stresses in eqn. (9) it is obvious, 
that in the stocky slenderness area the capacity is essentially limited by the shear stresses. In the moderate 
slender area the first yield criterion leads, depending on the moment distribution, to somewhat higher 
capacities than the equivalent slenderness approach of EC3. For very slender structures shear stresses do 
not count and capacities are very similar. 

5 CONCLUSION 

A procedure has been developed for lateral torsional buckling design of continuous beams with 
moment hinges. It has been alternatively applied for equivalent slenderness procedure in EC3 and for first 
yield criterion on the basis of a geometrically nonlinear theory 2nd order stress analysis including 
geometric imperfections. 
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