
587

SDSS’Rio 2010 STABILITY AND DUCTILITY OF STEEL STRUCTURES 
E. Batista, P. Vellasco, L. de Lima (Eds.)

Rio de Janeiro, Brazil, September 8 - 10, 2010 

LATERAL TORSIONAL BUCKLING OF SPACE STRUCTURES WITH
-BEAMS - STRUCTURAL BEHAVIOR AND CALCULATION 

Richard Stroetmann 

Richard.Stroetmann@TU-Dresden.de

Keywords: Lateral torsional buckling, space structures, couple effects, calculation methods.

Abstract. The structural behavior of space structures with -beams subject of lateral torsional buckling 
can often be described only insufficiently by plane subsystems. This is caused e. g. by couple effects of 
stabilizing and destabilizing beams or transmissions of rotations and displacements from cross girders at 
the connecting points. By means of special finite elements, which are designed for -beams in space 
structures, an efficient calculation will be possible. Beam systems with cross-connected structural mem-
bers, like cross girders or trapezoid sheets will allow a derivation of approximate solutions for standard 
applications. The intended paper deals with calculation methods for space structures with -beams and 
demonstrates structural behavior as well as applications on the basis of typical examples. 

1 INTRODUCTION 

Methods for analyzing space structures with beams subject to lateral torsional buckling are mainly re-
stricted to plane systems. Usually, the effect of adjacent structural elements is taken into account by
definition of bearings, discrete and continuous translational or rotational restraints. In many cases these 
simplifications describe the structural behavior of such beams with sufficient accuracy.

Problems may occur when adjacent members do not have a stabilizing, but a destabilizing effect. Of-
ten deformations (displacements, angular rotations) are transferred to the beams to be stabilized. In con-
sequence, bearings, discrete and continuous restraints cannot describe the stiffening effect entirely. The 
following examples will document the difficulties mentioned above. 

Figure 1 shows two transversely loaded beams that are connected by a lattice bar at the midspan. In 
case of lateral torsional buckling with different loading conditions qz,1 and qz,2 stabilizing forces will be 
transmitted by the joining member. The more loaded beam will be restrained by the less loaded beam.
The interaction can only be recorded considering the entire global system.
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Figure 1: Lateral torsional buckling of cross-connected -beams



588

Richard Stroetmann

x

y

z

y

plan view section

qz

cross girder

lo
ng

it
ud

in
al

 g
ir

de
r

Figure 2: Crossing -beams with uniformly distributed load 

The system in Figure 2 shows a cross girder with uniformly distributed load that is supported by a 
longitudinal girder. The deformation of both girders at the connecting point can be assumed to be identi-
cal. The angular rotation at the end of the cross girder and the vertical deflection of the longitudinal
girder result in a three-dimensional deformation shape. In the longitudinal girder bending moments Mz

and torsional action effects will occur. They depend on the load level, the stiffness ratio and the dimen-
sions of the system. Connections without stiffeners lead to additional distortions of the cross-section in 
the area of the connecting point. 

Figure 3 shows a roof structure consisting of purlins, trusses and a roof bracing. Lateral displace-
ments of the trusses and the roof bracing are linked by means of the purlins. On the one hand the bracing 
has a stabilizing effect on the trusses. On the other hand deformation, caused e. g. by wind loads, is trans-
ferred into the trusses. This causes deflecting forces in the trusses that lead to additional loadings in the
bracing. The assumption that purlins connected to the roof bracing act as rigid supports for the top flange 
of the trusses is inaccurate. Especially when diagonal bracings are realized as round steel tension bars and 
the bracings have to span large distances the influence of the deformation may become important. 

The preceding examples demonstrate that the structural behavior of space structures with I-beams
subject to lateral torsional buckling can often only insufficiently be described by a division into plane 
subsystems. Although known there is a lack of practical calculation tools that consider the interaction of 
the involved components with reasonable effort. 
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Figure 3: Roof structure with vertical and horizontal loads

2 FINITE ELEMENT MODELING OF SPACE STRUCTURES WITH -BEAMS

Applying the finite element method the structural system is idealized by the arrangement of structural 
finite elements. Suitable elements must be available to describe the fundamental mechanical properties of 
the members and their connections. Multifarious structures can be modeled by continuum elements such 
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as membrane, solid or shell elements. Decisive disadvantages of the analysis of -beam structures subject
to lateral torsional buckling are: 

The input of the structural systems including the definition of load and boundary conditions as well 
as geometrical imperfections such as initial bow or sway imperfections is very complex and time con-
suming.
Generating the numerical model requires a comparatively large number of elements. The resulting
meshes have a large number of nodes. To calculate the response of the structure a large system of 
equations needs to be solved. 
The analysis of the huge data output requires a graphical post processor. The transparency of results 
is partially lost since action effects are only presented as stresses, bending moments and in-plane 
forces per unit length.

In practice such calculations remain restricted to special cases, e. g. when manufacturing a large num-
ber of identical girders justifies these efforts. However, it is more efficient to use “macro-elements” with 
modified mechanical properties that represent the essential properties of the components to be modeled.
The effort needed for modeling, calculation and analysis can be minimized by using such elements, so
that FEM calculations can more widely be used for applications as described here. 

Within the framework of the research project [1] tools for the calculation of structural systems with -
beams subject to lateral torsional buckling were developed based on the finite element method. Among 
other aspects the research aimed at providing a design tool for space structures and thus to remove limita-
tions to plane systems such as single span or continuous I-beams and I-columns. It was intended to find a
possibility to describe the impact of adjacent structural members directly by means of suitable elements
and not only indirectly through the definition of discrete or continuous restraints and bearings. In addi-
tion, it was important to eliminate the assumption that there no change in cross-section shape during 
buckling, because some section designs with thin webs and support conditions of beam flanges require 
that web distortions need to be taken into account. The concept was to limit the mechanical properties of 
the elements that are essential for the modeling of members and connections. Effects such as transverse
shear or membrane strains of -beams were neglected. In a first step, the development of finite elements
was limited to linear-elastic material properties and linearized distortion-translation relationship (second 
order analysis).

For the modeling of beams and columns with double-symmetric -sections a “macro-“ or “super ele-
ment” composed of a group of element types (figure 4) was developed. The structural behavior in the 
plane of web is idealized by a beam element. Perpendicular to the plane of web the -section consists of 
two flange members and a web plate. 
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Figure 4: -Profile-Element – reference system, loads, bedding, internal forces and moments 
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The splitting of -sections into different elements has the advantage that web distortions can be de-
scribed with two-dimensional buckling shapes. The separation of the cross section eased the application
of eccentric forces and moments, the modeling of practical supporting conditions and the attachment of 
further structural elements to the flanges of the beams and columns. A frequently discussed issue in the 
beam theory is how to model geometric and/or static coupling conditions (keyword transmission of warp-
ing deformations) especially in cases when the beams are attached perpendicularly or in a random angle
to each other or if they consist of stepped cross sections. The modeling with this type of element elimi-
nates such kind of problems. 

Compared to the modeling of -profiles with shell elements the advantage of the proposed concept is 
that a relatively small number of elements is required for discretization. This leads to a significant reduc-
tion in computing time. Generating the model is very practicable and the numerical results are easier to 
analyze and interpret. The influence of cross-section fillets in rolled sections that significantly increase 
torsional stiffness can easily be defined by means of modifying the stiffness values. Modeling with solid 
elements requires a large number of elements, thus further increasing the effort for calculation and
evaluation of the results. 

Besides the -profile element additional elements were developed. A stiffening element can be used 
for the modeling of stiffeners at load applications and of end plates; a trapezoidal profile element, a beam
element for the modeling of bracings and lattice bars as well as different spring elements for the consid-
eration of connection flexibility.
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Figure 5: Assembly of the finite elements for trapezoidal sheeting, connection springs and -beams

3 APPROXIMATION METHODS FOR THE CALCULATION OF CROSS-
CONNECTED BEAMS 

3.1 Introduction to and survey of calculation methods 

In practice the level of utilization of the single beams in structural systems differs often significantly.
This is for example the case, when beams with various loads for practical reasons are designed with the 
same cross-section. Due to varying live loads the level of utilization can be different at a certain point of 
time.

If different loaded beams are cross-connected, they act together at lateral torsional buckling. The less 
stressed beams will restrain the more stressed ones (figure 1). 

In steel structures often girders with cross connections are used. Trusses, for example, can be coupled 
by purlins or secondary girders. Roof, wall and ceiling coverings provide a more or less continuous cou-
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pling of beams or columns. Due to the structural detailing diaphragm actions cannot always be taken into
account.

The following description will briefly present different methods of calculating buckling loads of lat-
eral coupled beam systems. Knowing the ideal buckling load a simplified verification of buckling resis-
tance, e.g. according to EN 1993-1-1 [3], is possible. 

One option to perform the structural analysis of coupled beam systems is to derive stiffness matrices 
of the beams separately (based on second order analysis) and use suitable coupling conditions to obtain
the matrix formulation for the overall structure. Rigid couplings can be described by kinematic con-
straints and semi-rigid ones by coupling matrices. Connections can be at discrete points or in closely
spaced intervals along the beams. The influence of constraining effects against twist rotations at the 
connecting areas can be considered by discrete or continuous torsional restraints. 

For simple structures approximation formulas and diagrams can be derived to determine the buckling 
load of coupled beams. Moreover, making use of programs for the calculation of single-span and con-
tinuous beams the lateral torsional buckling load of rigid coupled beam systems may by determined
according to second order analysis of lateral torsional buckling and non-linear spring characteristics of 
the beams. A detailed description of the methods is given in [4].

3.2 Approximation formulas for rigid coupled -beams

In case of simply supported beams with uniform distributed and single loads the assumption of buck-
ling shapes in the form of half sinus waves for twist rotations  and lateral displacements vM of shear
centre axis leads to an acceptable approximation for the buckling load. When the beams are rigidly cou-
pled, the kinematic constraints provide the transformation rules of the stiffness matrices. In case of two 
coupled beams the degrees of freedom will be reduced from four to three. The assembly of beam stiffness 
matrices to the global stiffness matrix and the derivation of the determinantal equation result in a charac-
teristic cubic polynomial with three eigenvalue. A closed-form solution is possible. 

The approximation formulas given in figure 6 provide buckling load values that in most cases deviate
by less than 5 % compared to calculations using more significant buckling shapes. Systems with a high 
stiffness of discrete and continuous torsional restraints show larger differences. If four, six or more 
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Figure 6: Approximation formulas for calculation of cross-connected Beams
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beams are rigidly coupled and respectively half of them have the same load intensity the buckling load of
these systems can obviously be calculated as well using the formulas given in figure 6. 

3.3 Diagrams for calculation of lateral torsional buckling moments 

Using the program PROFIL [2] diagrams were created for the determination of lateral torsional buck-
ling moments of girder systems with discrete and continuous rigid couplings (see figure 7). The diagrams 
are valid for systems of simply supported rolled -beams. The double-symmetric cross sections of the 
respective I-beams are identical. The application points of the uniformly distributed loads and the level of
couplings are placed to the centroid from the top flanges of the beams. At the determination of the dia-
grams web distortions were excluded. The application is as follows: 
The number of coupled beams determines the type of diagram to be used. Curve parameters are given by
the moment distribution My and the load relation q2/q1. Depending on torsion coefficient  (see equation 
(1)) the diagram provides the coefficient k to determine the lateral torsional buckling moment of the 
whole system (equation (2)). The value My,Ki refers to the total maximum moment My, that means either 
the span or support moment. Lateral torsional buckling moments of single beams j will be determined
with equation (3) by the relation of beam load and system load. 
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The coefficient k is nearly independent on section series and size. The diagrams in figure 7 are based
on minimum values of the IPE series. In good approximation the application is possible for other rolled
beams with doubly symmetric -section. In the diagrams for three coupled beams it has to be considered 
that the coefficient k increases from load relationships of zero to one and thereafter k decreases again. 
Under certain conditions the diagrams may also be used for determining lateral torsional buckling mo-
ments of systems of more than three beams. This requires that only two different values of transverse 
load are present and that the relation between the number of beams with the same load is n1:n2 = 1:1 or 
1:2.

4 EXAMPLES

In order to estimate the buckling loads of discrete coupled beam systems an iterative determination
can be performed. The aim of such determination is to find the load level Ki at which the sum of stabiliz-
ing and destabilizing forces that are transferred to the coupling beams reach equilibrium. Figure 8 dem-
onstrates the principle by an example. Three differently loaded beams are rigidly connected at midspan to
the top flange. If the spring characteristic Cy for lateral displacement of the I-beams at the connecting 
point is known from a previous calculation performed according to second order analysis the iteration can 
be carried out by using the diagram presented. 

Figure 9 shows a girder grillage consisting of purlins and trusses, respectively with same cross-
section, on which a uniformly distributed load of q=5.00 kN/m2 acts. Lateral torsional buckling of the 
purlins is prevented by restraints, e. g. due to trapezoidal sheeting. Caused by the structural system, the
load transfer of the inner trusses is approximately 2.75 times higher than that of the outer trusses. By the 
connection with the purlins the trusses are torsionally restrained and coupled in transverse direction at the 
top flanges. 
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The stability of the structural system was calculated by the program PROFIL [2] and various ap-
proximation methods as documented in [4]. Moreover, various effects were investigated by means of 
different calculations. Disregarding the coupling effect to the outer trusses and the torsional restraints 
from the purlins the buckling load factor of the inner trusses is Ki=0.39. With torsional restraints this 
factor increases to Ki=1.24. Additionally, the consideration of the coupling effect to the outer trusses
results in a buckling load factor of Ki=1.71. In this particular case it is necessary to consider both effects,
to verify the structural safety of the inner trusses. 
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Figure 9: Girder grillage with trusses and purlins – influence of different stabilization effects 

5 CONCLUSION 

The stability of space structures is often only insufficiently assessed by the analysis of plane subsys-
tems. Specific finite element formulations allow system analyses that include essential effects with regard 
to the overall structural behavior. Besides the possibility to consider the transmission of deformation of 
adjacent structural members, stabilizing forces of bracing systems can be directly determined. By restric-
tion to the effects that are essential for the structural behavior the efforts for modeling, calculation and 
interpretation are minimized. In this way, the finite element method can economically be applied to space 
structures in practice. 
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