
595

SDSS’Rio 2010 STABILITY AND DUCTILITY OF STEEL STRUCTURES 
E. Batista, P. Vellasco, L. de Lima (Eds.) 

Rio de Janeiro, Brazil, September 8 - 10, 2010 

ANALYTICAL DERIVATION OF A GENERALIZED-SLENDERNESS 
FORMULA FOR IN-PLANE BEAM-COLUMN DESIGN AND COMPARISON 

WITH INTERACTION-CONCEPT FORMULAE  

Andreas Taras*, Richard Greiner*  

* Graz University of Technology – Institute for Steel Structures and Shell Structures 
e-mails: taras@TUGraz.at, r.greiner@TUGraz.at 

Keywords: Beam-Columns, In-Plane Buckling, Interaction Factors, Generalized Slenderness. 

Abstract. This paper presents a new formulation for the design of beam-columns against in-plane 
buckling that makes use of an -increasingly popular- generalized slenderness definition and an “overall” 
formulation of the buckling reduction factor for combined load cases. Thereby, great care is placed on 
accurately describing the specific behavior of each studied cross-sectional type. The result is a 
“generalized slenderness” formulation that is as accurate, safe and mechanically consistent as the 
familiar and thoroughly studied interaction-concept formulae. 

1 INTRODUCTION 

Beam-columns are characterized by the presence of compressive axial forces N and bending 
moments M. The resistance of a steel member against either N or M is commonly determined in design 
codes by the use of buckling reduction factors =f( ), whereby the plot of the function  over the 
normalized slenderness  is a so-called buckling curve. The (usually) detrimental effect of the combined 
action of N and M is taken into account in design codes by formulae that are based on one of the 
following two concepts, see figure 1: 

- The interaction concept, found e.g. in clause 6.3.3 of Eurocode 3 [1], makes use of the 
information contained in the utilizations nFB and mLT of the buckling checks for flexural 
buckling under N alone and LT-buckling under M alone. The combined effect of N and M is 
then taken into account by an interaction factor k. 
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Figure 1: Concepts for beam-column design 
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- In the second group of concepts, a generalized definition of the (normalized) slenderness is used; 
they are therefore called generalized slenderness concepts in the following. Specifically, these 
concepts encompass the “overall load case method” used for the design of plates and shells (see 
e.g. [2]) and the so-called “general method” for the design of beam-columns of clause 6.3.4 in 
Eurocode 3. These methods have in common that they consider total utilizations for the 
combined case as basis for the calculation of the normalized slenderness and of the (overall) 
buckling reduction factor. As is illustrated in figure 1, the slenderness GS is defined in a 
generalized form as the square root of the total load proportionality factor LPF for the plastic 
collapse load (LPFMNA=Rpl) over the pertinent buckling eigenvalue LPFLBA=Rcr. The buckling 
strength is then defined as follows: 

 GS pl
b,d

M 1

R
R 1.0  (1) 

Thereby, Rb,d is the design buckling resistance (in terms of maximum LPF) of the component or 
structure against the studied buckling mode for a given load combination. 

Even though the current debate over these two concepts might seem to indicate otherwise, the 
concepts are best thought of as two different forms of representation of the same information, with no 
basis for attributing an (inexistent) higher degree of mechanical consistency to any of the two. In the case 
of the interaction concept as found in the Eurocode, mechanical accuracy and safety/reliability have been 
ensured by extensive theoretical, numerical and statistical studies, summarized in [3]. On the other hand, 
one could argue that the “generalized slenderness” formulation according to (1) is more “consistent” with 
the design checks for the single load cases, in the sense that it also implicitly contains the buckling 
checks used for only N or only M. (In the case of the “general method” this is only true for M, since for 
N it is based on y

.Npl instead of on Npl alone). However, the reduction factor GS must account for the 
exact same effects as the interaction factor k. As is indicated by the question mark in figure 1, the values 
to be adopted for GS are not clear and still up for debate, with a common opinion being that they must be 
studied and calibrated by means of GMNIA calculations, see e.g. [4].  

The following figure 2 illustrates factors GS obtained from such GMNIA calculations for the in-
plane buckling behavior of a beam-column under N+M with uniform moment diagram and different 
values of the ratio 0=(M/Mpl)/(N/Npl)=m0/n0. Two different definitions of  and  are used. Figure 2a 
makes use of ip and ip, which are based on the definitions of Rpl and Rcr valid for the overall load case 
N+M and in-plane buckling behavior. 
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Figure 2: GMNIA buckling reduction factors ip (a) and y, 0 (b) for in-plane buckling of an IPE 500. 
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In figure 2b, the familiar definition of the in-plane flexural buckling slenderness y is used, as well 
as a representation of the buckling strength for the combined, proportional load case solely in terms of 
the achievable axial load Nb. Both types of representation yield the same curve for the case of 0=0.0, 
representing the (imperfect) column, and result in distinctly different curves for varying values of 0.  

As was mentioned above, any application of a generalized slenderness concept requires a 
definition/formulation of the buckling reduction factor GS that reproduces the same type of information 
contained in an interaction factor k, thereby achieving high accuracy when compared to more 
sophisticated GMNIA calculations. This paper presents an analytical formulation for the buckling 
reduction factors ip and y, 0 (i.e. GS for the in-plane buckling phenomenon of beam-columns) that 
fulfils this requirement.  

2 DEFINITIONS AND ANALYTICAL FORMULATION 

This section presents the mentioned proposal for a “generalized slenderness concept” formulation for 
in-plane beam-column buckling design, focusing on compact class 1 or 2 sections. The full derivation is 
too lengthy to be included in this paper; thus, the reader is referred to the original source in [5]. However, 
the basic concepts of the derivation are briefly discussed in the following, making reference to figure 3. 
The first and essential step of the derivation consists of determining the generalized slenderness for the 
in-plane buckling case under N+M. Thereby, it is found convenient to do so on the basis of a 
linearization -with i=1, 2, … linear segments- of the cross-sectional interaction curve, see figure 3a. By 
introducing the parameters kni and kmi, the cross-sectional resistance of a section in terms of obtainable 
values of m=M/Mpl and n=N/Npl can be described as follows, for the applicable segment i: 
 ni mik n k m 1.0  (2) 

Table 1 contains coefficients kni and kmi that were derived for a variety of double-symmetric sections. 
Thereby, the factors SCi indicate the ratios =m/n at which the applicable linearized segment of the N/M 
cross-sectional interaction curve changes; e.g., if < SC1 kni=kn1; kmi=km1. 
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Figure 3: Linearization of the cross-sectional interaction and generalized slenderness definition (a); 

definition of a second-order failure criterion (b). 
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Table 1: Ccoefficients used for the description of the cross-sectional N+M interaction behaviour. 

# Type of section, loading, underlying 
residual stress distributions Parameters of the N-M interaction linearization  

1 
I-section, strong 
axis buckling 
N+My 

- -+

0.3-0.5 fy

kn1=1.0; km1= 1 0.5 a 0.75 ; SC1
m1

0.8

1 0.8 k
 

kn2=
m1

0.2

1 0.8 k
; km2=1.0; SC2  

0.8 
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RHS, N+My +0.5 fy

-0.2 fy
+

+
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Circular Hollow 
Section CHS, 
N+M 0.15 fy

-
+ + -

kn1=1.0 ; km1=0.74; SC1=0.8/(1-0.8 km1)=1.95 
kn2=0.2/(1-0.8 km1) =0.49; km2=1.0; SC2  0.6 
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I-section, weak 
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-
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Since the “generalized slenderness” concept operates with load amplification factors R, a reference 

load level m0/n0 is proportionally increased in the following, meaning that the ratio 0=m0/n0= 0 is kept 
constant. Taking this into account, the following expressions can be found for the cross-sectional (plastic) 
amplification factor Rpl and the buckling eigenvalue Rcr pertaining to the in-plane mode: 

 0
pl

0 0 0 0

1R
n c m c

 (3) 

 cr 2
j0

1R
n

 (4) 

With 0 ni 0 mic k k  ; 
2

j pl cr, jN / N  ; j = axis y or z, depending on the case. The 
generalized in-plane buckling slenderness can now be written as 
 ip j 0/ c  (5) 

The next step consists of a definition of a (second-order) failure criterion. The basic concept behind 
the adopted criterion is illustrated in figure 3b: the buckling load of the member is reached when at one 
cross-section the following condition is fulfilled: 

 
II

ni mi
pl pl

N Mk * k * 1.0
N M

 (5) 

Thereby, MII is the total, second-order bending moment in the critical cross-section at failure, while 
kni* and kmi* are factors derived –once again- from a linearization of the cross-sectional interaction 
diagram (see kni and kmi), but taking into account the transition from the applicability of the plastic and 
elastic cross-sectional interaction curve with increasing slenderness. This transitional behavior, discussed 
e.g. in [3] and [5], is caused by the detrimental effect of extreme-fiber (e.g. flange) yielding on the 
obtainable buckling strength observed in tests or realistic GMNIA calculations. Accordingly, the 
following expressions (6) and (7) for kni* and kmi* reproduce a transition from the values kni and kmi valid 
for the plastic cross-sectional capacity to the values of kni*=1.0 and kmi*=Wpl/Wel=w applicable for the 
elastic cross-sectional resistance at higher slenderness. 
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 ipni ni ni mSk * k ( 1 k ) C 1  (6) 

 ipmi mi mi mSk * k ( w k ) C w  (7) 
The factor  in (6) and (7) is a numerically calibrated, section-specific value that accounts for the 

sensitivity to extreme-fiber yielding and is given in table 1 for the different studied types of cross-section. 
CmS is the equivalent, sinusoidal moment coefficient for in-plane buckling.  

For an imperfect beam-column with sinusoidal geometric imperfection of amplitude 0e  and an in-
plane bending moment diagram, the total, second-order bending moment MII in equation (5) can be 
calculated as follows: 

 II
0mS

cr

1M C M N e
1 N / N

 (8) 

The use of (8) in (5) leads to 

 
0mS

ni mi
pl pl cr

C M N eN 1k * k * 1.0
N M 1 N / N

 (9) 

The next step, explained in detail in [5], consists of replacing the geometric imperfection amplitude 
0e  by the generalized, Ayrton-Perry imperfection amplitude that leads to the EC3 column buckling 

curves for the studied cross-section and the case where m0 = 0 = 0.0.  

 pl
0 imp imp

pl mi

M
e ; 0.2

N k *
                 (10) 

The introduction of the normalized terms j, 0=N/Npl and j pl crN / N , as well as some 
simplifying and re-writing, then leads to the following expression: 

 j , 0
ni j , 0 mi mS 0 imp

j, 0
2

j
k * k * C 1.0

1
 (11) 

Expression (11) is mathematically equivalent to the Ayrton-Perry type failure criterion used by 
Maquoi & Rondal [6] to establish and calibrate the well-known column buckling formulae in the 
Eurocode; this statement is actually only true if the equivalent sinusoidal moment coefficient CmS is 
expressed independently of the level of the (yet unknown) axial force N at failure. In [5], it is shown how 
this can be achieved by a very accurate approximation, thereby simply replacing all terms N/Ncr in 
published expressions for CmS by j ²/(c0+ j ²). By doing so, (11) can be solved explicitly for j, 0 , 
leading to the following, familiar-looking expression: 

 
22

j , 0

ip ip n ji

1 1.0
*k

 (12) 

with ip ni tot tot mi mS 0 im
2

j p
1 k * ; k * C
2

                 (13) 

Expressions (12) and (13) allow for a calculation of buckling reduction factors j, 0 as exemplified in 
figure 2b. The “overall”, in-plane buckling reduction factor ip ,shown in figure 2a, can also be be 
expressed equivalently, as a function of ip , by considering (5) and the following relationship: 

 b,ip y, 0 o
ip y, 0 0

pl 0 0

R / n
c

R 1 / n c
        (14) 

This finally leads to the explicit buckling design formula for in-plane beam-column buckling using 
the “overall” reduction factor ip: 

 0
ip

ip ip
22

ini p 0k

c 1.0
* c

 (15) 
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3 COMPARISON WITH GMNIA RESULTS AND EUROCODE CLAUSES 

In this section, the developed expressions (15) and (12) are compared to results of GMNIA 
calculations, whereby the latter use the common assumptions for geometry and imperfections already 
used by Beer & Schulz [7] during their elaboration of the numerical & theoretical foundation of the 
current Eurocode column buckling curves. This ensures consistency with this essential benchmark case. 

The first type of comparison is shown in figure 4. In this figure, the evaluations of (15) and (12) are 
shown in the same type of representation already used for figure 2. Figure 4a shows the “overall” 
reduction factor ip, while figure 4b illustrates the reduction factor y. 0 for the obtainable axial load, both 
for a circular hollow section, proportional loading and different values of 0. The figure shows that the 
differences between numerical and analytical curves are very small, and approximately equal for the pure 
column buckling case ( 0=0.0) and the actual beam-column cases ( 0 0.0). It can be shown that the type 
of representation used in figure 4a convergences to a lower-bound curve, while the value of y, 0 in 
fugure 4b of course tends towards zero with increasing values of 0. Both phenomena are very well 
represented by the proposed formulation. 
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Figure 4: Comparison of newly developed analytical and numerical GMNIA buckling reduction factors 

ip (a) and y, 0 (b) for a CHS section. 
 

A different type of comparison is shown in figure 5. In this figure, a spectrum of obtainable 
combinations of the external loads N+M is plotted for two sections loaded by N + My or Mz, whereby 
three different member lengths and a uniform moment diagram are considered. Figures a) and b) compare 
the GMNIA results with the current Eurocode “interaction concept” formulae of clause 6.3.3, see [1] and 
[3]. Figures c) and d) compare the numerical results with the evaluation of the newly developed “overall” 
expression (15). The accuracy of both the two interaction-concept formulae found in the Eurocode 
(Annex A and B) and the new formula can generally be said to be excellent.  

Some advantages of the new formula can be mentioned here: the fact that expression (15) builds upon 
an accurate (linearized) description of the actual, section-specific cross-sectional N+M interaction 
diagram causes it to be “automatically” accurate at very low slenderness, and to lead to a consistent and 
“correct” transition from the buckling to the (plastic) cross-sectional design check. The latter point is not 
the case for the two sets of Eurocode interaction factors, which make use of approximations of the cross-
sectional interaction for the buckling check and usually don’t lead to the exact interaction at zero 
slenderness. Another advantage of (15) appears in cases with non-equal end-moments, where failure can 
be dominated by the cross-sectional check at one of the ends instead of by proper buckling. In the 
interaction concept, this must be checked specifically, while (15) simply “includes” this check by being 
limited by 1.0.  
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Figure 5: N+M buckling interaction curves according to Annex A & B of Eurocode 3 (a-b) and the 

analytical formulation (c-d), compared with GMNIA results 
 

In the final figure 6, the numerical GMNIA results, code formulae and the evaluation results of (15) 
are compared on the level of interaction factors kj, computed so that they fulfill the following equation:  

 j j j
pl j pl

M Nn k 1.0 ; n
M N

               (16) 

The top three diagrams in figure 6 compare the values of kj (kyy or kzz) as defined in Annex A and B 
of the Eurocode with GMNIA results, while in the bottom three diagrams GMNIA results are compared 
with (iteratively determined) results of (15) that fulfill (16). Again, the proposed formulation follows the 
GMNIA values of kj quite well, especially qualitatively. The curves obtained from (15) appear to have a 
similar course as the ones of the EC3- Annex A formulae, but with some advantages in accuracy 
particularly in the case of the circular cross-section, for which the cross-sectional interaction is poorly 
represented by the Eurocode formulae. It should be noted that the accuracy of the kj values gives a rather 
misleading representation of the accuracy of the formulation itself, particularly for higher values of ny or 
nz. Even errors of some 20-30% in terms of kj only lead to total errors of only a few percentage points at 
values of nj beyond 0.5. In this sense, it is a welcome observation that the accuracy of the proposed 
formulation in terms of kj is highest for low values of nj, and mostly conservative in all other cases.  
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Figure 6: Comparison of interaction factors kj; top: Eurocode Annex A & B; bottom: new proposal. 

4 CONCLUSION 

The design proposal in this paper combines the advantages of the “interaction” and “generalized 
slenderness” concepts for the case of in-plane beam-column buckling. The comparison with numerical 
results and current Eurocode rules (with many more examples given in [5]) showed the new proposal to 
have a consistent level of accuracy and safety. The proposal could serve as a procedural blue-print for the 
expansion of “generalized slenderness” concepts to other member-buckling cases.  
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