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Abstract. In this work, Donnell’s nonlinear shallow shell equations are used to study the dynamic 
buckling and bifurcations of simply supported cylindrical shells subjected to axial or lateral load. A 
modal expansion with eight degrees of freedom containing the fundamental, companion, axially 
asymmetric and five axi-symmetric modes is used to describe the lateral displacement of the shell. The 
Galerkin method is used to obtain the nonlinear equations of motion which are, in turn, solved by the 
Runge-Kutta method. Several studies on the nonlinear dynamics of cylindrical shells are found in 
literature but they are restricted to specific geometries. In this paper we intend to study through a 
detailed parametric analysis the influence of the shell geometry, specifically Batdorf’s parameter, length 
to radius ratio and radius to thickness ratio on the main nonlinear dynamic characteristics of the shell. 

1 INTRODUCTION 

The combination of a simple geometry and its efficiency as a load carrying member, particularly for 
axial loads and lateral pressure, makes cylindrical shells one of the most common shell geometries in 
industrial applications and in nature. The buckling and vibration analysis of cylindrical shells under 
various loading conditions has thus become an important research area in applied mechanics. Also, the 
adequate selection of geometric characteristics is fundamental in designing against instability. 

Amabili and Païdoussis [1] and Karagiosis [2] present extensive literature reviews related to the 
nonlinear dynamics of shells in vacuum, and shells filled with or surrounded by quiescent or flowing 
fluid. These topics are also presented in detail in a book by Paidoüssis [3] on fluid-structure interactions 
and a book by Amabili [4] on nonlinear vibrations and stability of plates and shells. Here only a few key 
contributions are mentioned. 

The seminal works of Evensen [5] and Dowell and Ventres [6] gave the original idea to the modal 
expansions for the shell flexural displacement involving symmetric and asymmetric modes. Later, the 
studies by Ginsberg [7] and Chen and Babcock [8] contributed to the understanding of the influence of 
the companion mode on the behavior of cylindrical shells. These works showed that cylindrical shells 
usually display a softening behavior. Gonçalves and Batista [9] found that the presence of a dense fluid 
increases the softening characteristics of the frequency-amplitude relation when compared with the 
results for the same shell in vacuum. In a series of important papers Amabili et al. [10-13] the nonlinear 
free and forced vibrations of a simply supported, circular cylindrical shell in contact with an 
incompressible and non-viscous, quiescent or flowing dense fluid are studied using the Donnell’s 
nonlinear shallow-shell theory. However most of these investigations are concerned with the analysis of 
elastic isotropic shells with fixed geometric characteristics and there are no specifics works related to the 
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effect of geometry on the instability of cylindrical shells. Other interesting works on nonlinear dynamics 
of cylindrical shells can be seen in [14-17]. 

In this work, an eight-degrees-of-freedom model is used to study the nonlinear vibrations of perfect 
circular cylindrical shells with both axial and lateral loads. To discretize the shell, Donnell shallow shell 
equations are used together with the Galerkin method to derive a set of coupled ordinary differential 
equations in time domain. In order to study the effect of the geometric characteristics of the shell, several 
analyses are developed to understand their influence on the natural frequencies, critical loads, 
circumferential wave number and nonlinear frequency-amplitude relation. The obtained results can be 
used as a design tool by engineers and scientist to select adequate shell geometries. To the authors’ 
knowledge, such an investigation has not been presented so far. 

2 MATHEMATICAL FORMULATION 

2.1 Shell equations 

Consider a simply supported thin-walled circular cylindrical shell of radius R, length L, and thickness 
h. The shell is assumed to be made of an elastic, homogeneous and isotropic material with Young’s 
modulus E, Poisson ratio , and mass density s. The axial, circumferential and radial co-ordinates are 
denoted by x, y and z, respectively, and the corresponding displacements on the shell surface are denoted 
by u, v and w, as shown in Fig. 1. In this work the mathematical formulation will follow that previously 
presented in references [10], [14], [15] and [17]. 
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Figure 1. Shell geometry and loads 

The shell is subjected to both a lateral pressure f and a distributed axial load 
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where Pe is a compressive uniform static load, fe is a uniform lateral static pressure and L is the forcing 
frequency. 

The nonlinear equation of motion, based on the von Kármán-Donnell shallow shell theory, in terms 
of a stress function F and the lateral displacement w, is given by  
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where )]1(12/[ 23EhD  is the flexural rigidity and c (kg/m3 s) is the damping coefficient. 
The compatibility equation is given by 
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 In Eqs. (2) and (3) the bi-harmonic operator is defined as 2222224 )]/(/[ Rx .

2.2 Solution expansion for the transverse displacement 

The numerical model is developed by expanding the transverse displacement component w in series 
form in the circumferential and axial variables. From previous investigations on modal solutions for the 
nonlinear analysis of cylindrical shells under axial loads [10, 17] it is clear that, in order to obtain a 
consistent modeling with a limited number of modes, the sum of shape functions for the displacements 
must (i) express the nonlinear coupling between the modes and (ii) also describe consistently the unstable 
post-buckling response of the shell, as well as (iii) the correct frequency-amplitude relation. Here, the 
following modal expansion is adopted [10, 14]: 
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where 1,1(t), 1,1c(t), 1,2(t), 1,2c(t), 0,1(t), 0,3(t), 0,5(t) and 0,7(t) are the time dependent modal 
amplitudes, Lxmq /  and m and n are, respectively, the number of half-waves in the axial direction 
and the number of waves in the radial direction. This leads to an eight-degrees-of-freedom reduced order 
model. This model includes the basic vibration mode, the companion mode, symmetry-breaking modes in 
the axial direction and four axi-symmetric modes. These modes are enough to describe the basic 
nonlinear interactions responsible for the characteristic softening exhibited by cylindrical shells and the 
in-out asymmetry of the nonlinear displacement field. 

2.3 Linear analysis 

Substituting the fundamental mode in Eq. (3), obtaining the stress function, applying the Galerkin 
method and considering only one longitudinal half-wave (m=1), it is possible to obtain the expressions 
for the lowest natural frequency, axial critical load and lateral critical pressure in terms of two 
parameters. Using the circumferential wavelength parameter ( n ) and the Batdorf’s parameter (Z) given 
respectively by [18] 
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the non-dimensional frequency, axial critical load and critical lateral pressure are obtained as 
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3 NUMERICAL RESULTS 

3.1 Linear Analysis 

Consider a simply supported cylindrical shell under both an axial load and a lateral pressure. As a 
first analysis, Fig. 2 shows the minimum values of the wave length parameter ( n ) obtained for the lowest 
natural frequency, critical axial load and critical lateral pressure parameters as a function of the Batdorf’s 
parameter (Z). As can be observed, the minimum wavelength parameter is the same for the lowest natural 
frequency and axial critical load but different for critical lateral pressure. It is also possible to see that, as 
the Batdorf’s parameter increases, the wavelength parameter increases in a nonlinear manner. 

Figure 3 shows the influence of Batdorf (Z) parameter and the L/R and R/h ratios on the lowest 
natural frequency parameter  (Eq. 7). As can be observed in Fig. 3a, which is plotted considering the 
lowest value of the wavelength parameter n , as the Batdorf’s parameter increases there is a strong 
reduction of the natural frequency parameter, . Batdorf’s parameter includes the influence of both L/R
and R/h. Figure 3b shows the influence of L/R and R/h ratios on the lowest natural frequency and the 
associated number of circumferential waves (n). The L/R and R/h ratios influence directly the natural 
frequencies values and the number of circumferential waves. Shells with the same L/R and R/h ratios 
have the same lowest natural frequency and wavelength numbers. This figure shows that most shell 
geometries can be analyzed using Donnell’s shallow shell theory ( 5n ).
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Figure 2. Critical values of wavelength parameter, n .

3.2 Nonlinear Analysis 

Now the influence of the shell geometry on the frequency-amplitude relations of the shell is 
investigated. Consider a thin-walled cylindrical shell with h=0.002 m, R=0.2 m, E=2.1x108 kN/m2, =0.3
and S=7850 kg/m3. For this shell, several geometries with increasing values of Batdorf’s parameter (Z)
and same R/h relation are considered. Table 1 shows the geometric characteristics, lowest natural 
frequency, associated circumferential wave number and L/R and R/h ratios for each Batdorf’s parameter. 
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Figure 3. Influence of (a) Batdorf geometric parameter Z and (b) the L/R and R/h ratios on the lowest 
natural frequency parameter .

Figure 4 displays the influence of Batdorf’s parameter on the nonlinear frequency-amplitude relation 
for the shell geometries shown in Table 1. All shells display a softening behavior. The initial nonlinear 
softening behavior increases as the Batdorf’s parameter decreases. On the other hand, the amplitude at 
which the bending back of the nonlinear response occurs increases with Z. These curves show the strong 
influence of Batdorf’s parameter on the nonlinear behavior of the shell. The influence of the L/R and R/h
ratios on the nonlinear frequency-amplitude relation is conducted considering a fixed value of Batdorf’s 
parameter (Z=300). Table 2 shows three shell geometries with different natural frequencies (rad/s) and 
L/R and R/h ratios and Table 3 shows three shell geometries with the same natural frequency but different 
L/R and R/h ratios. 

Table 1: Geometric characteristics and natural frequencies for increasing values of Z.

Z L (m) L/R R/h n o (rad/sec)
100 0.20477 1.02 100 7 6186.47 0.02423 
200 0.28959 1.44 100 6 4369.52 0.01712 
300 0.35467 1.77 100 5 3628.90 0.01422 
400 0.40954 2.05 100 5 3087.81 0.01210 
500 0.45788 2.29 100 5 2776.22 0.01209 
600 0.50159 2.51 100 5 2579.93 0.01010 

Figure 5 displays the nonlinear frequency-amplitude relations obtained for the shell geometries 
presented in Tables 2 and 3. As shown in Fig. 5a, the curves display similar initial softening behavior but 
different bending back points. The bending back point of Case A (R/h=71.55) is lower than that of Case 
B (R/h=127.19) and Case 0 (R/h=100). This shows that shells with the same Batdorf’s parameters but 
different L/R and R/h ratios do not have the same nonlinear behavior at large vibration amplitudes. Figure 
5b shows the nonlinear frequency-amplitude relations obtained for shell geometries in Table 3. The shells 
do not have the same behavior even though they have the same natural frequency 0 and parameter Z.

Table 2: Geometric characteristics for different natural frequencies, L/R and R/h ratios and the same Z.

Case h (m) R (m) L (m) L/R R/h Z n o (rad/sec)
0 0.002  0.2 0.35467 1.77 100 300 5 3628.90 0.01421 
A 0.004 0.28618 0.6 2.09 71.55 300 5 2560.52 0.01435 
B 0.006 0.76315 1.2 1.57 127.1 300 6 934.59 0.01397 
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Figure 4: Frequency-amplitude relations for increasing values of Z.
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Figure 5: Frequency-amplitude relations: a) different natural frequencies and different L/R and R/h ratios 
but same Z, b) same natural frequencies and Z but different L/R and R/h ratios 

Table 3: Geometric characteristics: same natural frequencies and Z but different L/R and R/h ratios. 

Case h (m) R
(m)

L (m) L/R R/h Z n o (rad/sec)

0 0.002  0.2 0.35467 1.77 100 300 5 3628.90 0.01421 
C 0.007766 0.3 0.8559 2.85 38.63 300 5 3628.90 0.02132 
D 0.0013 0.4 0.40439 1.01 307.69 300 5 3628.90 0.02844 

Finally, Table 4 displays three shell geometries with same natural frequencies and same L/R and R/h
ratios (consequently the same Z and ). The associated nonlinear frequency-amplitude relations are 
displayed in Fig. 6. All shells display the same nonlinear behavior. This shows that the nonlinearity is 
basically governed by the L/R and R/h ratios. 

Table 4: Geometric characteristics same natural frequencies and same L/R and R/h ratios. 

Case h (m) R (m) L (m) L/R R/h Z n o (rad/sec)
0 0.002  0.2 0.35467 1.77 100 300 5 3628.90 0.0142 
E 0.0028195 0.28195 0.5 1.77 100 300 5 2574.12 0.0142 
F 0.0045112 0.45112 0.8 1.77 100 300 5 1608.83 0.0142 
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Figure 6: Frequency-amplitude relations for same natural frequencies and same L/R and R/h ratios. 

The nonlinear frequency-amplitude relation governs the bifurcations and jumps observed in 
cylindrical shells under both lateral pressure and axial loads, as illustrated in Figure 7 where the 
resonance curve for a shell with L/R=1.0 and R/h=100 and subjected to a lateral pressure is shown. A 
detailed explanation of the influence of the frequency-amplitude relation on the instabilities of cylindrical 
shells can be found in [14] and [17]. 
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Figure 7: Resonance curve for a shell under lateral pressure. L/R=1.0 and R/h=100.

4 CONCLUSION 

In this work, the influence of geometric characteristics on the natural frequencies, critical loads, 
critical modes and nonlinear frequency-amplitude relations of a simply supported cylindrical shell 
subjected to both axial and lateral pressure loads is analyzed. To model the shell the Donnell shallow 
shell theory is used together with an expansion of eight degrees of freedom to describe the lateral 
displacements of the shell. As observed, the nonlinear frequency-amplitude relation of the shell is 
basically governed by the L/R and R/h ratios and not by the Batdorf’s parameter and shells with same L/R
and R/h ratios display similar nonlinear behavior. The nonlinear frequency-amplitude relation governs the 
bifurcations and instabilities of the shell under external forcing. These results could serve as a design 
basis for engineers interested in choosing optimal geometries of cylindrical shells. 
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