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Abstract.  In the article, we have formulated a geometric non-linear mathematical-physical 
model of the snap-through of the system of a thin-walled shallow bimetallic translation shell in a 
homogenous temperature field according to the theory of large displacements, moderate rotations, and 
small strains of the shell element. The model enables the calculation of the geometric conditions, of 
shallow translation shells, due to the influences of temperature and mechanical loads. The results are 
based on the numeric solution of a non-linear system of partial differential equations with boundary 
conditions according to the finite difference method. 

1. INTRODUCTION 

In practice bimetallic line and plane elements with different coefficients of linear temperature 
expansion are used in a range of machines and devices. They are mostly used as safety constructional 
elements against temperature overheating of these machines and devices. They are also used for different 
purposes such as thermo-elements, blinkers, and for temperature measurement. The function of a 
bimetallic construction element is based on the physical fact that bodies expand with the increase of 
temperature. Ideally, homogenous bodies expand and contract isotropically. In the case of bimetallic 
bodies manufactured from two materials with different temperature expansion coefficients the 
deformations due to temperature changes are not isotropic. This study discusses the stress and 
deformation conditions for a thin double curved bimetallic translation shell, which due to the possibilities 
of constructing different curvatures into the longitudinal and transversal directions enables different 
relations between the upper and lower temperature snap-through. We also took into consideration 
nonlinear terms in the deformation tensor, while we placed equilibrium equations on the deformed 
element of the bimetallic shell. 

2. THERMOELASTIC EQUATIONS OF THE PROBLEM  

On the element of a deformed shell that is created by cutting the shell in the direction of the 
curvilinear coordinates 

1
ds  and 

2
ds  we observe equilibrium of all forces and moments. In this way five 

equations can be derived for the equilibrium of forces and moments on a deformed body [1,2]: 
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Then the system of equilibrium equations is supplemented with three kinematic equations, three 
constitutive equations and in addition also with eight equations for the forces and moments per unit of 
length [3,4,5,6]. Thus, we have obtained the system of thermo-elastic equations, which consists of the 19th

equations and of the same number of unknown variables [2]. However, the number of equations and 
unknowns in this system can be reduced by proper substitution. Finally a geometric non-linear 
mathematical-physical model of the snap-through of the system of a thin-walled shallow bimetallic 
translation shell in a homogenous temperature field according to the theory of large displacements, 
moderate rotations, and small strains of the shell element is achieved as a system of three non-linear 
partial differential equations (1) with appurtenant boundary conditions (2) where displacements ,u v  and 
w  act as unknown functions [1,2]: 
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3. NUMERIC SOLUTION TO THE SISTEM  

We solved the system of non-linear differential equations (1) with the boundary conditions (2) by 
using a finite difference method [6,7] in the program package Mathematica 7.0.0. Below are the results 
for a shell loaded with a temperature T  and with a force per unit area 

3
q . This force is compensated on 

the shell’s edges by the constant transversal forces 
13

R
T  and 

23

R
T : 

1 2

3

13 23
2 8

R R
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− −
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The shell has the following material and geometric characteristics:  
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We slowly heat up a shell that is loaded with an equally distributed force 20F N= −  along the 
upper surface of the shell. So the force per unit area equals 2

3
0, 005 /q N mm=− . Let us observe the 

change in the relations of heights ξ  in dependence of temperatureT .  
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The stability curves in dependence from mechanical loads 
3

q  and temperature T  for a shell with the 
geometric characteristics in (4) are shown in Figure 1. With the increase of force per unit area 

3
q , the 

temperature of both snap-through 
1p

T  and 
2p

T  decreases.  

Table 1: The snap-through temperatures in dependence from the load 
3

q  in case of an equal support on 
the shell edges 
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When the force per unit area 
3

q , is strong enough the shell will snap-through without additional 
heating. With interpolation of the snap-through temperature 

1p
T  in dependence from external loads 

3
q  in 
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Table 1, we have calculated, in the treated case, th
loaded with an equally distributed force F =−

amounts to a mechanical load of 
3

0.2535q N=−

the temperature 
f

T . If the shell with two equ
temperature T , then 

f
T can be readily calcula

moment 
1

M or 
2

M from which the temperature T

(2

f

k J

T
K

−

=

Figure 1: Stability curve

In continuation let us observe the shell loaded
the outer force, equally distributed along the up
corners of the simply supported bimetallic shell. 
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R
T  and 

23

R
T  are: 

1

13 23

R R

x a

T T
=

=

where mmχ ⎡ ⎤
⎢ ⎥⎣ ⎦

denotes the length of the edge at
forces per unit of length 

13

R
T  and 

23

R
T are exerted.

M. Author et al.

hat the shell without additional heating snaps-through if 
101.4N−  along the upper surface of the shell, which 

2/N mm . The flat state of the bimetallic shell occurs at 
ual parabolic construction curves is loaded only with 
ated from the boundary condition (2) for the bending 

f
T  of the flat shell follows: 
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es for different load values 
3

q

d with temperature T  and force per unit area 
3

q  and let 
pper shell surface be compensated at the four opposite 

The reduced transversal shear forces per unit of length 
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t the corner of the shell, where the reduced transversal 
 The results for this example of load are in Table 2.  
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Table 2: The snap-through temperatures in dependence from the load 
3

q  in the case of a shell supported 
at the corners 
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Let us also observe the case of the simply supported shell, which at its apex, at the point 

1 2
0x x= = , is loaded with a concentrated force F . For this example of load it is necessary to place in 

the BVP (1), (2): 
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The reduced transversal shear forces per unit of length 
13

R
T and 

23

R
T  have values in equation (7). 

Parameter h  defines the region where the force F  exerts and limits towards zero. The snap-through 
temperatures in dependence from an external force at the apex of the shell are written in Table 3, while 
the shape of the shell at the moment of the upper snap-through with the force 105F N=− is shown in 
Figure 2. In Figure 3 the local concavity of the shell due to the concentrated force at the apex of the shell 
is evident.  

Table 3: The snap-through temperatures in dependence from an external force F  in the case of a simply 
supported shell 
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At the end, we will treat a temperature-loaded shell where all four corners are fixed in such way 
allowing only rotations at the corners, while the rest of the shell is free to rotate and displace. In other 
words, a shell fixed so cannot expand horizontally at the corners. Instead of the normal forces 

1
N  and 

2
N  at the boundary conditions (2) we now take into account that the horizontal displacement at the 
corners of the shell is equal to zero:  

1 2 1 2

1
cos sin cos sin sin 0

x x a x x a

w u v w y uϕ ψ ψ ϕ ψ
= = = =

′+ − ≅ + =  (9) 
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The stability curve that shows the relation of h
for this example of load in Figure 4. When the 
displacements w are positive in the middle of t
overall view, the flatness of the fixed shell is decre

Figure 5 which shows the shape of the shell 
reference to the stability curve in Figure 4, which
ξ increases, we can conclude that the shell does n

Figure 2: The geometry of the shell at the start o
force 105F N= − ac

Figure 3: The occurrence of a local concavity in
105F N= − actin

Figure 6 shows the shape of a shell in the u
temperature 476T C=

� . The relation of heights 

Figure 4: Stability curve for th
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heights ξ  in dependence of the temperature T  is shown 
shell is heated up to the temperature 255T C=

�  the 
the shell edge, and negative at the shell corners. In an 
eased with heating. This fact is evident in 
when it is heated to a temperature 255T C=

� . With 
h shows that in an unstable region the relation of heights 
not snap-through into a convex shape 

of the upper snap-through in the case of a concentrated 
cting at the apex of the shell

n the case of temperature load and a mechanical force 
ng at the apex of the shell

unstable equilibrium state when the shell is heated to a 
ξ  is at that temperature again equal to one.  

he shell of fixed corners free to rotate 
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Figure 5: The geometry of a s

Figure 6: The geometry of th

4.  CONCLUSION  

Simply supported thin-walled shallow bimeta
new position at a defined temperature. The snap-th
geometric characteristics of the shell, external mec

For shallow single layer shells with a co
( ) .z constα = , the relation of heights ( )Tξ rem

the increase in temperature T the horizontal
component of the displacement w at the shell edg
shells do not have snap-through. Very shallow bim
construction curves also have no snap-through. 
characteristics in (4) has no temperature snap-thro
shallow shells snap-through at higher temperatu
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hell at the temperature 255T C=
�

he shell at temperature 476T C=
�

allic shells have the characteristic to snap-through into a 
hrough temperature 

p
T  is dependent on the material and 

chanical loads and manner of fixation. 
nstant coefficient of a linear temperature expansion 

mains constant regardless to the temperature load. With 
l radius does somewhat increase, while the vertical 
ge remains the same at all times. This is why single layer 
metallic shells with a small value of the parameter k  of 
We find that a shell with the material and geometric 

ough if its horizontal radius amounts to. Inflated or less 
res. With an equal radius a  of a bimetallic shell, the 
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temperature of the upper snap-through 
1p

T  increases with the increase of the parameter k  of the 
construction curves.  

If an external force F  is exerted on the shell, snap-through will occur at a lower temperature 
comparing to the snap-through temperature 

1p
T  of an equal shell that is loaded only with a temperature 

T . At which temperature the shell will snap-through is dependent, not only on the magnitude of the force 
F  and the manner of its distribution on the shell surface, but also on the reactions at its boundaries. The 
snap-through temperature 

1p
T  is lowest when the external force F  is equalized at all four corners of the 

shell. With a large enough force F , the shell will snap-through without any additional temperature load.  
For snap-through to occur with bimetallic shells it is necessary to ensure, apart from a high enough 

temperature, that the edges of the shell can freely expand. With a bimetallic free rotating shell that is 
fixed at the corners, displacements in a horizontal direction are not possible. Such a shell can only expand 
at the corners in a vertical direction due to which the increase of temperature T also increases the shell 
inflatedness. A shell fixed in such a manner cannot perform the function of a thermo-switch. 

If an external force F  is exerted on the shell, snap-through will occur at a lower temperature 
comparing to the snap-through temperature 

1p
T  of an equal shell that is loaded only with a temperature 

T . At which temperature the shell will snap-through is dependent, not only on the magnitude of the force 
F  and the manner of its distribution on the shell surface, but also on the reactions at its boundaries. The 
snap-through temperature 

1p
T  is lowest when the external force F  is equalized at all four corners of the 

shell. With a large enough force F , the shell will snap-through without any additional temperature load.  
For snap-through to occur with bimetallic shells it is necessary to ensure, apart from a high enough 

temperature, that the edges of the shell can freely expand. With a bimetallic free rotating shell that is 
fixed at the corners, displacements in a horizontal direction are not possible. Such a shell can only expand 
at the corners in a vertical direction due to which the increase of temperature T also increases the shell 
inflatedness. A shell fixed in such a manner cannot perform the function of a thermo-switch. 
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