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Abstract. The objective of this paper is to introduce and investigate a new plate buckling analysis 
procedure based on geometry. The method is applied to a range of plate edge support condition 
combinations including many where results are not readily available. The results obtained by using the 
new procedure were compared against theoretical formulae available in the literature and by finite 
element analyses with good agreement. Following the verification of the new procedures the technique 
was extended to consider buckling of non-rectangular plates and cylindrically curved plate structures 
where the results were conservative but easy to use.

1 INTRODUCTION 

From the pioneering work by Bryan [1] who determined the buckling load of simply supported 
rectangular plates research has been carried out by many different people. These have been summarized 
in standard textbooks [2] – [4] and in data sheets [5] – [6]. The basic approach to determining the 
buckling strength of plated structures is through the solution of the linearised equations governing the 
transition from a flat form to a slightly buckled form. In theory, classical methods can deal with all the 
phenomena of flat plate stability using equilibrium, constitutive, and strain-displacement relationships. 
These are most easily accomplished for rectangular plates with simple boundary conditions. Numerical 
methods characterize the behavior of a structure at points or within regions of the structure and result in 
large-order systems of equations whose coefficients are numerically evaluated functions of the material, 
geometry, and applied-load parameters at these points or regions. As a group, these methods furnish wide 
latitude in the treatment of non-uniformly distributed values of the design parameters and nonlinear 
behavior. There are three common methods of determining the lowest buckling load of linear elastic 
plates, either by direct solutions of the differential equation for plates, virtual work or by use of the 
energy method. Bradford and Roufegarinejad [7] studied the behavior of rectangular plates with all sides 
clamped and with linearly varying axial edge compression. They provided a comparison of buckling 
analysis solutions from different investigators for square plates in pure compression and showed that 
small variations in the assumed models gave rise to predictions of the buckling loads varying by up to 
30% (in most cases less than 5%).The objective of this paper is to develop an analysis method able to 
deal with all possible plate edge boundary conditions which can be used in spreadsheets for the 
preliminary design that is simple to apply and cost effective. The method can be applied to rectangular or 
parallelogram shaped plates or to rectangular curved plates. 

This paper is only concerned with the determination of buckling loads for simply-supported, free and 
clamped conditions and not with other supports such as elastically restrained or with post-buckling 
considerations as the objective is to produce a new design procedure appropriate for preliminary design 
in aircraft structures. 
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2  THE GEOMETRY BASED ANALYSIS METHOD 

2.1 Introduction 

In formulating the plate buckling equation several parameters are needed to generalize the equation 
of the plate buckling problem. The parameters of the buckling equation are an applied load shape 
parameter [ ], a plate edge support configuration parameter [ ] and a plate geometry parameter [ ]. 

The applied load shape parameter describes the shape of the load distribution applied to the plate 
edges and covers plates with both axial and bi-axial loading. The plate edge support parameter describes 
the edge support conditions of the plate and in particular if the edge is simple, hinged or clamped. The 
plate geometry parameter is based on the aspect ratio of the plate geometry. Equation (1) presents the 
plate buckling equation according to the Geometry Based Analysis Method (GBAM) 

 
relcr  (1) 

where cr is the critical buckling stress and rel is a plate relative buckling stress parameter. 

2.2 Determination of the plate relative buckling stress rel

The relative buckling stress in the loading direction is rel,x and in the transverse direction is rel,y. 
These stresses are calculated from the Euler buckling load of a simply-supported column which is given 
by: 
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The Euler equation deals with forces, whilst a plate analysis deals with stresses. Therefore equation (2) 
has to be converted into a stress problem. For a plate, which has length a in loading x-direction and width 
b in the transverse y-direction and constant thickness t the plate Euler buckling stresses Euler is 
determined by dividing both sides of equation (2) by the plate cross section area of the loaded side (bt). 

i.e. 2
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The plate relative buckling stresses rel,x and rel,y are determined directly from equation (3). 
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where Ix and Iy are the respective second moments of area of the plate about centroidal axes in the 
plate.  

2.3  Determination of the plate geometry parameter [

The geometry based analysis method classifies plates into two sorts: short plates and long plates. This 
classification is derived from the k values curve of uni-axially loaded plates simply supported on all 
edges according to classical buckling theory. Figure 1 shows the buckling coefficients (k) according to 
the aspect ratio  is the ratio of the length of the plate in the loaded direction divided by the width of 
the plate) and the number of half waves or buckles (m) on the plate in the longitudinal loaded direction. 
The curve shows that a plate with only one buckle, m 1, intersects the curve of a plate with two 
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buckles, m 2, at the point For the geometry based analysis method we consider the intersection 
point as the separation point between short and long plates. 

The plate geometry coefficient is assumed to be linear up to an aspect ratio of 1.4 and then afterwards 
to mirror the single buckle value up to an aspect ratio of  = 2. Above this value it is assumed to be 
always equal to 1.800 as the intersection of multiple modes means that buckled modes above this value 
are approximately the same as can be seen in Figure 1. The values are given in Table 1. 

 
 
 
 
 
 
 
 
 

 
Figure 1: Buckling coefficients, k, for a simply supported plate 

Table 1: Values of  for m = 1 and m = 2 buckles 
m     1        1          1        1         1         1         1         1         1         1/2      2         2        2         2         2         

  0.000  0.250  0.500  0.625  0.750  0.875  1.000  1.125  1.250  1.400  1.550  1.675  1.800  1.925  2.000 
  1.000  1.250  1.500  1.625  1.750  1.875  2.000  2.125  2.250  2.400  2.225  2.125  2.000  1.875  1.800 

 Below an aspect ratio  of 1 the buckling load decreases as the aspect ratio  is increased, Above 
this limiting value of  the critical stress changes marginally as can be seen in Figure 1.  

2.3  Determination of the plate edge boundary terms 

Plates are unlike columns, plates have not only end boundary conditions like columns but also lateral 
boundary conditions. In other words, column buckling is resisted by only one bending stiffness (the 
smallest bending stiffness) whilst plate buckling is resisted by the bending stiffness of the plate in both 
longitudinal and lateral directions. Figure 2 shows the two terms x in the loading direction and y in 
lateral direction, which are linked together by the relative plate buckling stress rel. 

 

Figure 2: Edge boundary terms x and y 

The standard four Euler column cases are the free-clamped, case I, simple-simple, case II, simple-
clamped, case III and clamped-clamped, case IV. The critical compression force Fcr for these columns is 
given by the standard Euler formulae. For example in case III: 

 2
22.04 y

cr

EI
F

a
 (6) 

Defining case II as the “Basic” case we relate the other three cases to determine the values of I
Kx

, 
, , ,I III III IV

y x y x
 and IV

Ky
where the case number is written as a superscript. The value of II

x
 equals 1 
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whilst the value of II
y

 equals 0 since there is no lateral support. As the buckling coefficient for the 
clamped-free case is 0.25 we get 0.25I

x
 and 0.I

y
 In similar manners 2.04, 0.00,III III

x y
 

4.00IV
x

and 0.00.IV
y

Two virtual buckling load cases – Case V, free-free and case VI, free-simply supported are now 
defined. Obviously 0.00V

x  and 0.00V
y

. The 6 cases are plotted on a straight line where the 
assumption is made that case VI is between case V and case I. The resulting plot is shown in Figure 3. 
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Figure 3: Stiffness terms for 

x
and 

y
 for the Euler cases and the virtual cases 

In order to determine VI
x

 for the case free-simple the following correspondences are used: cases I, V 
and VI all have one free edge; Cases I, III and IV have one clamped edge; both sets are linked by case I. 
The value of case VI is determined by proportion 

 
VI V III I
x x x x
I V IV I
x x x x

 (7) 

Solving for VI
x

 and substituting 

 2.04 0.25 0.25 0.00 0.119
4.00 0.25

III I
VI I V Vx x
x x x xIV I

x x

  (8)  

In order to extend this column analogy into plates the edge ordering shown in Figure 4 is used: 
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Figure 4: Edge configuration order 

18 possible edge configurations can be identified as shown in Figure 5. They are sorted into three 
groups – Group 1 with loaded edges simply supported, Group 2 with one loaded edge simply-supported 
and one clamped and Group 3 with both loaded edges clamped. 

Lateral support condition Loaded edges support condition

Group 1

Group 2

Group 3

ff fs fc ss sc cc

ss

sc

cc

ssff 10s
f

s
f

scff 12s
f

c
f

ccff 11c
f

c
f

ssfs 18s
s

s
f

csfs 13c
s

s
f

ccfs 15c
s

c
f

ssfc 17s
c

s
f

scfc 16s
c

c
f

ccfc 14c
c

c
f

ssss 01s
s

s
s

csss 06c
s

s
s

ccss 04c
s

c
s

sssc 05s
c

s
s

scsc 03s
c

c
s

ccsc 09c
c

c
s

sscc 07s
c

s
c

sccc 08s
c

c
c

cccc 02c
c

c
c

 
Figure 5: Edge support conditions 
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The calculation approach is to relate the buckling of the plates to the Euler column buckling cases. 
The unknown values of x and y are estimated using simple interpolation. 

Considering the plates shown in Figure 5 let 01 05 be the increment from the basic case, plate 01, to 
plate 05. The increment 01 05 is calculated from the Euler column cases, case I and case VI as follows: 

 01 05 = 0.119 + 0.25 = 0.369 (9) 

Let 05 07 be the increment from plate 05 to plate 07. The increment 05 07 is twice the previous 
increment as the difference in buckling factors in going from the propped cantilever to the fully fixed 
case is approximately two. Therefore 05 07 = 2(0.369) = 0.738. 

In a similar manner, the increment 05 03 is also twice the increment 01 05 and hence is also 0.738.  
The increment 03 02 equals twice the previous increment 01 03 and is therefore 2(0.738) =1.476. 
Once the increments are known, we add them to the values of Kx and Ky of the plates starting from 

plate 01, i.e. 
x

 and 
y

which are known a priori as equal to 1.000. 
Hence we can establish, for example 

 1.000 0.738 1.738x x
 (10) 

 1.738 1.476 3.214x
 (11) 

Using similar principles we can fill in the remaining values of x and y for cases 01-09. 
For plates with lateral edges free the values of x and y have to be modified. The values of x and y

are determined as before by calculating the decrements. For example, 

 0.5 0.369 0.185  (12) 

 17 18 0.5 0.185 0.093 (13) 

Hence 
 01 111.000 1.000 0.185 0.815Kx

 (14) 

 17 181.000 1.000 0.093 0.907Kx
 (15) 

From Equations (14) and (15) it can be seen that simply-supported edges have a reduction factor of 
0.815 and clamped edges a reduction factor of 0.907. These factors are used in determining the reduction 
factors for the remaining combinations. The resulting sets of x and y are given in Table 2. 

 
Table 2: Values of x and y for all 18 plate combinations 

Case  01 02 03 04 05 06 07 08 09 

Edge  ssss cccc scsc ccss sssc csss sscc sccc ccsc 

 x  1.000 3.214 1.738 3.214 1.000 1.738 1.000 1.738 3.214 

y 1.000 1.738 1.369 1.000 1.368 1.000 1.738 1.738 1.369 

Case  10 11 12 13 14 15 16 17 18 

Edge  ssff ccff scff csfs ccfc ccfs scfc ssfc ssfs 

x  0.800 2.893 1.564 1.564 2.893 2.893 1.564 0.800 0.800 

y 0.000 0.000 0.000 0.095 0.2225 0.095 0.225 0.225 0.095 
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3  EXAMPLES 

In this section a few examples are presented treating different edge configurations of the plates. All 
examples deal with rectangular aluminium plates with thickness t 1.0mm. The aspect ratio varies 
from 0.3 to 2.0. Young’s Modulus of elasticity E 70GPa and Poisson’s ratio 0.3. The 
results of the classical theory were estimated using Bulson [4] or the software DLUBAL/RSTAB, whilst 
the FEM eigenvalue buckling calculations were computed using the software MSC/NASTRAN. The 
results from the method proposed in this analysis are called GBAM. The applied edge compression stress 
is axially uniform. The results are presented in term of the buckling constant k, where all the results of 
calculated critical stresses are divided by a reference stress 

E
given by:   

 
22

212 1E
E t

b
 (16) 

Four examples of plates under uniform compression are given in Figures 6-9.  
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Figure 6: Buckling coefficients for a plate simply-supported on all sides (Case 01  ssss )  
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Figure 7: Buckling coefficients for a plate case 06 (csss)  
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Figure 8: Buckling coefficients for a plate case 09 (ccsc)  
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Figure 9: Buckling coefficients for a plate case 14 (ccfsc)  

It is noticeable that in all cases the GBAM approach gives results as accurate as those of finite 
element analyses.  
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4  EVOLUTIVE PLATES AND CURVED PLATES 

Equation (1) describes only the case of rectangular plates. To extend the geometry based plate 
stability analysis method to include also non-rectangular plates needs modification of the plate relative 
buckling stress parameter rel. Figure 10 shows the the evolutive plate used in this analysis. 

a

b 2

c

c

b 1

Figure 10: Dimensions of evolutive plates 

Consider a unit square plate which has  = a/b2 = 1.0 and a = 1.0. The change in the longitudinal 
plate relative buckling stress rel,x of the plate is related to the change of the aspect ratio from the long 
edge b2 to the short edge b1 of the evolutive plate. The modification parameter [ x] is written as: 

 
1 2

1 2 1 1

1 1 1
1x

a a
b b b b

 (16) 

The change of the plate relative buckling stress rel,y in the lateral direction is governed by the lateral 
change in area of the square plate and the evolutive plates, i.e. the plate with evolutive edges is converted 
into an equivalent square plate. The difference in area, is equated to a square plate and the edge 
length is added to the width of the evolutive plate. Accordingly the removed area equals: 

 12 1
2

A c  (17) 

The change in edge length, b equals 
 b c  (18) 

Hence  
 

2 1b c  (19)  

y is taken equal to the new value of b2.  
Hence, for example, if c = 0.3 then b1/ b2 = 0.4, x = 1.0/0.4 = 2.5 and y = 1 + (0.3)0.5 = 1.55. Using 

mean stresses similar equations can be constructed for plates with different stresses at each end. Figure 
11 shows the results of a typical analysis with different b1/ b2 ratios for simply-supported plates. The 
results of the analysis are compared against those tabulated in the German handbook [9]. It is noticeable 
that the largest discrepancies occur for the case b1/ b2 = 1.0 whereas the agreement between GBAM and 
finite element procedures is excellent as can be seen in Figure 6. 
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Figure 11: Buckling coefficients for evolutive plates 
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In order to extend the procedure to slightly curved plates (plates bent cylindrically with radius r and 
the outer edges subtending an angle 2 radians at the centre) the moments of inertia Iy in the stiffness 
matrix have to be modified. In these calculations the plan breadth, b, is used.  The curvature will increase 
the stiffness of the plate, - since the centre of gravity (CG) of the curved plate is displaced by a distance 
dCG from the centre of gravity of the flat plate. The moment of inertia Iy is then calculated: 

 3
2

12y CG
btI bt d  (20) 

where 1 1 2 2

2 1

cos
2CG

d A d Atd r
A A

 (21)  

and 2 2
1 2 1 2

2( ) sin 2 sin, , ( )  , 
3 3

r t rd d A r t A r
  

The maximum curvature that the procedure can be applied to is shown in reference [8] to be 

 100 / ( ) 1b r  (22) 

For example, consider a curved aluminum plate, thickness 2.0mm, width 50.0 mm,  = 0.3 and radius 
r = 20 m. For this plate equation (22) yields the ratio to be 0.83 and using equation (21) dCG = 0.04 mm. 
Hence using equation (20) Iy = 33.51 mm4 and Ix = 10.00 mm4. From equations (4) and (5) rel,x = 
1028.85 N/mm2 and rel,y = 27.63 N/mm2. The total rel = 1056.48 N/mm2. Finally using equation (1) the 
critical buckling stress is 1373 N/mm2. This compares with the stress obtained using reference [9] which 
is 1368 N/mm2. 

Similar accuracies are obtained when the method is applied to other curved plates. 

5  CONCLUSIONS 

This paper has presented the development of a new procedure based on geometry for the design and 
analysis of plate buckling. The results of the procedure have been compared against both finite element 
analyses and classical analyses presented in the literature and have been shown to be accurate when 
applied to rectangular, evolutive and slightly curved plates. 
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