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Abstract. The objective of this work is the stability analysis of an open sandwich cylindrical shell with 
unsymmetrical faces under combined load basing on moderately large deflections (geometrically 
nonlinear theory), and elastic-plastic properties of the material of the faces are taken into 
considerations. The shell consists of two load-carrying faces made of isotropic, compressible, work 
hardening material and they are of different thickness and made of different materials. Kirchhoff-Love 
(K-L) hypotheses hold for the faces, and the active deformation processes are considered. The core is 
assumed to be elastic, incompressible in the normal z direction and it resists transverse shear only. The 
elastic constants Ec, and Gc of the core are taken to be variable, and the strength capacity of the shell is 
substantially influenced by these constants. Prebuckling stress state is taken to be membrane one and the 
virtual work principle is the basis to derive the strain energy expression. The resulting nonlinear stability 
equation is solved by Ritz method. An iterative algorithm of elastic-plastic analysis was elaborated to 
solve the stability equations and the final objective of the work is numerical analysis of the influence of 
geometrical and material parameters on critical loads and equilibrium paths. 

1 INTRODUCTION 

Shell structures are very interesting from the design point of view and these are well recognized in the 
literature [1], [3], [4]. A very significant problem in linear and nonlinear analyses of shell structures is 
stability and associated phenomena. One can find here multilayered structures, which are widely used in 
the manufacturing of modern vehicles, planes, cisterns, tanks, and in civil engineering, as well. These are 
subjected to widely varying combinations of hydrostatic pressure and axial load; hence, stability problem 
for such structures is of great importance. The purpose of this study is investigation of large displacement 
stability loss of a sandwich cylindrical panel loaded by longitudinal forces and uniformly distributed 
external pressure. It is assumed that the shell under consideration is made of a compressible material with 
linear and exponential strain hardening. Thus, it is also assumed that the effective stress in prebuckling 
state of stress in the shell can exceed the yield limit of the shell material. To find a solution of the 
problem, the assumptions of geometrically nonlinear theory and elastic-plastic properties of the faces are 
taken into account and the core remains elastic. In Refs [5], [6] both, linear and nonlinear buckling 
analyses of elastic-plastic conical and cylindrical shells are presented. In Ref. [4] Vinson J. R. described 
and discussed the up-to-date methods for sandwich structures analysis, and included a large reference list 
there. Kim S. E. and Kim, S. C. [1], Pinna and Ronalds [2], and Siad [3] discuss stability problems of 
cylindrical shells under various external loadings, also with imperfections. The constitutive relations used 
in the elastic-plastic analysis follow the incremental J2 Prandtl-Reuss plastic flow theory of plasticity with 
the Huber-Mises yield condition. The K-L (Kirchhoff-Love) hypotheses are accepted and the active 
deformation processes according to Shanley concept are considered. The system of stability equations 
expressed by the displacements does not have an exact solution. Any approximate solution, e.g. by 
Galerkin method is complicated because the appropriate calculations are time consuming. The necessity 
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to satisfy the kinematic and static boundary conditions leads to the assumption of approximate functions 
in a very complicated form. Thus, the virtual work principle is used to derive the total strain energy in the 
shell, and the analysis is based on the strain energy minimization, where the total strain in the shell can be 
expressed in terms of displacement vector components. Ritz method is accepted to derive the stability 
equations for the considered shell. The final solution is a very compound function of the deflection 
function parameter, which makes it possible to trace the equilibrium paths for the shell. An iterative 
computer algorithm was elaborated to facilitate the numerical analysis for the shells in elastic, elastic-
plastic, and in totally plastic prebuckling state of stress. The algorithm reflects a specific feature of the 
elastic-plastic shell stability problem, where the stability equation is a transcendental function, where the 
coefficients of this equation depend on the load acting the shell.  

2 BASIC ASSUMPTIONS AND GEOMETRICAL RELATIONS 

The analyzed object is an open sandwich cylindrical shell, the element of which is presented in Figure 
1. The shell consists of three layers: two thin face-layers, which are of different thickness h1, h2, and one 
core layer with thickness H=2h. The face layers can be made of different materials, which are 
compressible and isotropic ones. 

Figure 1: The element of a sandwich cylindrical shell with internal forces and moments 

The core layer is assumed to be elastic, incompressible in the normal z direction and it resists 
transverse shear only. The middle surface of the core layer is taken as the reference surface of the shell. 
The main assumptions for the accepted model include that the shell is thin-layered and shallow one, and 
the post-buckling stress state is elastic or elastic-plastic. The following basic assumptions hold for the 
accepted model: (i)  the shell is thin-layered, the core is elastic, incompressible in the z direction, the 
faces are of different thickness and they are made of different materials; (ii) the shell is shallow, the radii 
of curvatures of the layers are assumed to be equal; (iii) strains in the shell are described by nonlinear 
geometrical relations of the theory of moderately large deflections; (iv) the strains in post buckling stress 
state are elastic or elastic-plastic; (v) the displacements in normal direction do not depend on the z
coordinate, and prebuckling stress state is the membrane one; (vi) constitutive relations in the analysis are 
those of the J2 plastic flow theory of plasticity with the H-M-H (Huber-Mises-Hencky) yield condition.  

If we accept the K-L hypotheses for the faces and include shear for the core we follow the so-called 
broken line approach (see Fig. 2) for the displacement scheme of the deformed shell. 
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Figure 2:  Geometrical configuration of deformed shell. 

Following the broken line approach the relations between displacement vector components u, v, w of 
arbitrary point of the shell and the displacements of points situated on middle surface of the faces are as 
follows: 

( ) ( )1 1
, , , ,

2 2i i i i x i i iw w u u z c t w v v z c t w ϕ
± ± ±= = + ± + = + ± +  (1) 

Here: 
i =1 – lower face  - ( )10,5  0,5c z c t≤ ≤ +
i =2 – upper face  - ( ) cztc 5,05,0 2 −≤≤+ ,   c = 2h1,   ti = hi

Superscripts „+” and „–” denote upper and lower face, respectively. We also introduce auxiliary relations 
between displacements of the faces, so called reduced displacements, in the following way: 

( ) ( ) ( ) ( )1 2 1 2 1 2 1 2
1 1 1 1

, , ,
2 2 2 2

u u u v v v u u u v v vα α β β= + = + = − = −  (2) 

If we assume that the core does not deform in the normal z direction and the ratio h/R <<1, then we get  

( ) ( )

( ) ( )
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4 4
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Non-linear geometric relations between strain tensor components and the components of displacement 
vector for particular layers of the shell are accepted in the following form 
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Here: 
εx , εϕ  are strains along the coordinates x and y, 
γxϕ , γϕz , γxz  are shear strains in the shell, 

χx , χϕ , χxϕ  are changes in curvature of the middle surface of the shell. 

3 CONSTITUTIVE RELATIONS OF THE J2 PLASTIC FLOW THEORY 

We assume that effective stresses in the shell can be higher than yield stress of the shell material. 
Thus, constitutive relations are accepted according to Prandtl-Reuss plastic flow theory. Stresses and 
stress rates are related to strain rates or strain increments by a physical plasticity rule, which is flow rule, 
and Huber–Mises–Hencky (H-M-H) yield condition, generalized on the case of plastic stress hardening, 
is accepted. The following relations express Prandtl-Reuss plastic flow theory equations: 

( )1 3 1 1
3 , ,   

2 1 3 2

p
i

ij ij ij m ij ij m m kk
i

d
d d d d d

G

ν εε σ δ σ λ σ δ σ σ σ λ
ν σ

= − + − = =
+

 (5) 

Here, i and i are effective strain and effective stress, respectively. Parameter λ can be determined on the 
basis of plastic work increment: 

1 1p p
s s s s

t
W

E E
δ σ δε σ δσ= = −  (6) 

That gives 

3 1 1

2
i

t iE E

δσλ
σ

= −  (7) 

The resultant middle surface forces and moments (see Figure 1) in shell faces are accepted in the 
following form: 
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 (8) 

If we substitute stress variations in equation (5) - using condition (7), by strain variations, and substitute 
them into (4) then, performing prescribed integration we obtain the following constitutive relations: 
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Here Bij and Dij are coefficients of the local stiffness matrix given below: 
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The above relations show that constitutive relations of the plastic flow theory are independent of secant 
modulus Es. If, moreover, a bilinear stress-strain material model is accepted in the analysis, then tangent 
modulus Et and Bij and Dij coefficients are constant in plastic range. 

4 STABILITY EQUATIONS OF SANDWICH CYLINDRICAL SHELL

Stability equations are derived from the virtual work principle and the strain energy methods. In 
order to obtain the stability equations from the variational relations, the principle of the stationary 
potential energy will be invoked, with the sandwich cylindrical shell considered to be in a state of neutral 
equilibrium. Since the principle of the stationary potential energy states that the necessary condition of 
the equilibrium of any given state is that the variation of the total potential energy of the considered 
system is equal to zero, we have the following relation 

( ) 0T U Lδ δΠ = − =  (11) 

We conclude from Eqs. (11) that if the shell is given the small virtual displacements, the equilibrium still 
persists if an increment of the total potential energy of the system δ Π T is equal to zero. Relation (11) is 
the basis to derive the variational equation of equilibrium of a shell. For cylindrical sandwich shell the 
total potential energy of internal forces is equal to the energy of the specified layers. Here U is the strain 
energy accumulated in the shell and represented by strain components 
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cU U U U+ −= + +  (12) 

The terms in Eqn (12) and the work of external forces L are as follows  
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The particular terms in the above equation are related with three layers: upper layer U+, lower layer U-, 
and core Uc. L represents the potential of external loads. Equation (11) with its nature has a form of 
equilibrium equation in variational sense, and it is correct both for the pre- and postcritical deformation 
state. Instead of exact expressions for the displacements ui we introduce approximate functions with 
coefficients Ai. These coefficients must be chosen in such a way that they correspond as far as possible to 
real displacements.  

As it results from the assumptions, the elastic material constants Ec, and Gc of the core are variable. It 
is a well-known fact that Ec, and Gc influence substantially the strength capacity of shell structures. These 
parameters have their highest values at the faces and change nonlinearly toward shell middle surface 
according to formula 

( )coshzc cE E kz=  (16) 

Here k is a parameter that depends on the properties of the core material. The variable properties can be 
reached by changing the core material density in the technological process. It also results from 
experimental data that Kirchhoff modulus Gc is a quadratic form of the material (plastic foam) density. 
Very good effects can be obtained when the cores are used with variable stiffness along middle surface 
coordinates. This stiffness can be varied continuously, or with sudden jumps. In this work it is assumed 
that the modules Ec, and Gc depend on spatial variable z. 
Ritz method will be used to solve the equations. The equation 

0 0

0
Rl

T i
i

L
u dxdy

u

β
δ δ∂Π = =

∂
 (17) 

is satisfied for an arbitrary value of the variations of parameters iAδ , where i=1,2,...,k. Thus we have 

5

1

0,i
ii

Aδ δ
=

∂ΠΠ = =
∂ Α

   i=1,2,..,5,   hence  0T

iA

∂Π =
∂

 (18) 

In order to solve the considered problem by Ritz method, we use variational equation (11) with 
taking into account nonlinear geometrical relations (4), and we accept the displacement basis functions w, 
u and v in the following form  
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Here  ,      0 l, , 0  ,
m n

k x p
l R

π ϕ β= ≤ ≤ = ≤ ≤ (20)

 is angle of inclination of buckle waves with respect to shell generatrix. 
Free parameters Ai in (19) are determined in the solution process.  m and 2n are parameters related 

with the number of halfwaves developed in the longitudinal and circumferential direction, respectively. 
The term x in (19) represents the influence of the external shear forces on the deformation modes of the 
shell. The accepted basis functions satisfy kinematic boundary conditions of a free-support of shell edges 
[6]. According to Eqs. (18), we calculate derivatives of the total potential energy of the shell with respect 
to free parameters Ai (i = 1, 2, 3, 4, 5) of the basis functions, and, finally, we get a non-homogeneous and 
non-linear set of algebraic equations, which are the stability given here in a very concise form: 

3 2
11 1 12 2 13 3 14 4 15 5 11 1 12 1 13 1 2 14 1 3 15 1 4 16 1 5 17

2 2
21 1 22 2 23 3 24 4 25 5 21 1 22 31 1 32 2 33 3 34 4 35 5 31 1 32

2
41 1 42 2 43 3 44 4 45 5 41 1

,

, ,

a A a A a A a A a A b A b A b A A b A A b A A b A A b

a A a A a A a A a A b A b a A a A a A a A a A b A b

a A a A a A a A a A b A b

+ + + + = + + + + + +

+ + + + = + + + + + = +

+ + + + = + 2
42 51 1 52 2 53 3 54 4 55 5 51 1 52, a A a A a A a A a A b A b+ + + + = +

 (21) 

Coefficients b17, b22, b32, b42, b52 include longitudinal, surface, and shear external loads. The other 
coefficients depend exclusively on geometrical and material parameters of the shell and on number of 
buckling halfwaves m, n of the shell middle surface, and on parameter . We present, for example: 

( ) ( ) ( ) ( )

( ) ( ) ( )

" " " "
11 22 35 11 11 79 12 80 12 12 81 31 13 82 33 33 872

2
1 2" " 3

22 103 22 22 118 22 104 32 23 119 113

12 12 8 23 48 31 83 33 88 32 105

1 2
2 3 4 4

2
       3 3 4  ,

4
1 1 3 1 3

 ,
4 2 2

a B F B D F D F B D F D B F B D F
RR

t t cG
D F B D F D F D B F F

c

a B F B F D F D F D F
R R R R

= + − + + − − − + − +

+ +
− + − + + − +

= − + − − + ...

5 SOLUTION OF NONLINEAR EQUATIONS AND THE RESULTS 

The set of equations (21) allows us to determine the nonlinear equilibrium paths for the considered 
shell. We eliminate parameters A2-A5 from set of Eqs. (21), and if appropriate transformations and 
simplifications are made, we obtain the final solution in the form of the following non-linear algebraical 
equation: 

2 3 0
1 1 2 1 3 1

1 4 5

, xe A e A e A N
q

Ae e qR
κ

κ
+ += =

+
 (22) 

Here: ei are coefficients of the stability equation that have a very complicated form and they depend on 
geometrical parameters, material properties, buckling form, and external loading acting the shell. We 
elaborate a special numerical iterative algorithm where the basis is stability equation (22). The computer 
program makes it possible to determine the equilibrium paths and critical loads for cylindrical sandwich 
shells being in elastic, plastic, or elastic-plastic state of stress. Thus, lateral pressure q, and longitudinal 
force Nx can be determined as the functions of deflection w of the shell.  

Solution algorithm and program of numerical calculation take into consideration a specific feature of 
elastic-plastic stability of shells. Stability equation (22) is a transcendental function, where the 
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coefficients of local stiffness matrix depend on parameters of external loads. So, we have to use some 
iterative techniques to build up equilibrium paths, and to determine upper and lower critical loads.  

A cylindrical sandwich panel with the basic dimensions l = 0.9m (shell length), rs = 1.2m (mean 
radius), β = 0.6 rad (shell radius), h1 = 0.0012m, h2 = 0.0012m, 2h = 0.01m shell (thickness of the upper, 
lower and core layers, respectively) was accepted in numerical calculations. The face material was 
structural carbon steel St1, St4, St5 (Polish grade) with Et = 32000 MPa; yield limit σpl = 240 MPa; 
elastic modulus E = 210000 MPa; shear modulus of the core is G3 = 24 MPa.  

   
Figure 3: Equilibrium paths; the influence of shear modulus of the core on critical loads. 

Fig. 3 shows an example of the results of numerical calculations. The curves in the diagram represent 
lateral pressure versus shell deflection q = q(w). One can notice that the increase of shear modulus causes 
increasing both upper and lower critical loads. The lower curve in the diagram shows non-relative 

changes in critical loads G
wqΔ  for different value of shear modulus Gc = G3. The other numerical 

calculations were also carried out to analyze the postcritical equilibrium paths for arbitrary combinations 
of the external loads and geometrical and material parameters of the shell.  

5 CONCLUSION 

The analysis presented in this work shows that the accepted method of the stability analysis of elastic-
plastic sandwich shells with the core of variable stiffness was appropriately chosen; the results are new 
and valuable. The elaborated algorithm of iterative numerical calculations can trace the equilibrium paths, 
is versatile one and can be used for the shells in elastic, elastic-plastic or in totally plastic state of stress. 
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